Computational Drug-Likeness Studies of Selected Thiosemicarbazones: A Sustainable Approach for Drug Designing †
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Combinatorial Library of Selected TSCs
3.1.1. Pharmacokinetic Parameters
3.1.2. ADMET Properties
3.1.3. Bioactivity Score
3.2. Molecular Docking Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalaivani, S.; Priya, N.P.; Arunachalam, S. Schiff bases: Facile synthesis, spectral characterization and biocidal studies. Int. J. App. Bio. Pharm. Technol. 2012, 3, 219–223. [Google Scholar]
- Khan, S.A.; Kumar, P.; Joshi, R.; Iqbal, P.F.; Saleem, K. Synthesis and in vitro antibacterial activity of new steroidal thiosemicarbazone derivatives. Eur. J. Med. Chem. 2008, 43, 2029–2034. [Google Scholar] [PubMed]
- Lobana, T.S.; Sharma, R.; Bawa, G.; Khanna, S. Bonding and structure trends of thiosemicarbazone derivatives of metals-an overview. Coord. Chem. Rev. 2009, 253, 977–1055. [Google Scholar]
- Nutting, C.M.; Van Herpen, C.M.L.; Miah, A.B.; Bhide, S.A.; Machiels, J.P.; Buter, J.; Kelly, C.; De Raucourt, D.; Harrington, K.J. Phase II study of 3-AP Triapine in patients with recurrent or metastatic head and neck squamous cell carcinoma. Ann. Oncol. 2009, 20, 1275–1279. [Google Scholar]
- Quiroga, A.G.; Ranninger, C.N. Contribution to the SAR field of metallated and coordination complexes: Studies of the palladium and platinum derivatives with selected thiosemicarbazones as antitumoral drugs. Coord. Chem. Rev. 2004, 248, 119–133. [Google Scholar]
- Gupta, S.; Singh, N.; Khan, T.; Joshi, S. Thiosemicarbazone derivatives of transition metals as multi-target drugs: A review. Results Chem. 2022, 4, 100459. [Google Scholar]
- Leovac, V.M.; Bogdanović, G.A.; Jovanović, L.S.; Joksović, L.; Marković, V.; Joksović, M.D.; Denčić, S.M.; Isaković, A.; Marković, I.; Heinemann, F.W.; et al. Synthesis, characterization and antitumor activity of polymeric copper(II) complexes with thiosemicarbazones of 3-methyl-5-oxo-1-phenyl-3-pyrazolin-4-carboxaldehyde and 5-oxo-3-phenyl-3-pyrazolin-4-carboxaldehyde. J. Inorg. Biochem. 2011, 105, 1413–1421. [Google Scholar]
- El-Sawaf, A.K.; Nassar, A.A.; El-Samanody, E. Synthesis, magnetic, spectral and biological studies of copper (II) complexes of 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one N (4)-substituted thiosemicarbazones. Sci. J. Chem. 2014, 2, 17–26. [Google Scholar]
- Gupta, P.; Gupta, J.K.; Halve, A.K. Design, synthesis and in-vitro antimicrobial screening of some biorelevant thiosemicarbazones. Int. J. Res. Pharm. Sci. 2014, 4, 13–20. [Google Scholar]
- García-Tojal, J.; Gil-García, R.; Fouz, V.I.; Madariaga, G.; Lezama, L.; Galletero, M.S.; Borrás, J.; Nollmann, F.I.; García-Girón, C.; Alcaraz, R.; et al. Revisiting the thiosemicarbazonecopper (II) reaction with glutathione. Activity against colorectal carcinoma cell lines. J. Inorg. Biochem. 2018, 180, 69–79. [Google Scholar]
- Mostafa, S.I.; El-Asmy, A.A.; El-Shahawi, M.S. Ruthenium(II) 2-hydroxybenzophenone N(4)-substituted thiosemicarbazone complexes. Transit. Met. Chem. 2000, 25, 470–473. [Google Scholar]
- Sinha, P.K.; Falvello, L.R.; Peng, S.M.; Bhattacharya, S. Chemistry of some ruthenium phenolates: Synthesis, structure and redox properties. Polyhedron 2000, 19, 1673–1680. [Google Scholar]
- Jakupec, M.A.; Galanski, M.S.; Arion, V.B.; Hartinger, C.G.; Keppler, B.K. Antitumour metal compounds: More than theme and variations. Dalton Trans. 2008, 2, 183–194. [Google Scholar]
- Khan, T.; Raza, S.; Lawrence, A.J. Medicinal utility of thiosemicarbazones with special reference to mixed ligand and mixed metal complexes: A Review. Russ. J. Coord. Chem. 2022, 48, 877–895. [Google Scholar] [CrossRef]
- Palanimuthu, D.; Shinde, S.V.; Somasundaram, K.; Samuelson, A.G. In vitro and in vivo anticancer activity of copper bis(thiosemicarbazone) complexes. J. Med. Chem. 2013, 56, 722–734. [Google Scholar] [CrossRef]
- Mohamed, G.G.; Ibrahim, N.A.; Attia, H.A. Synthesis and anti-fungicidal activity of some transition metal complexes with benzimidazole dithiocarbamate ligand. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 72, 610–615. [Google Scholar]
- Leovac, V.M.; Bogdanović, G.A.; Češljević, V.I.; Jovanović, L.S.; Novaković, S.B.; Vojinović-Ješić, L.S. Transition metal complexes with Girard reagent-based ligands. Struct. Chem. 2007, 18, 113–119. [Google Scholar]
- Rai, A.; Qazi, S.; Raza, K. In silico analysis and comparative molecular docking study of FDA approved drugs with transforming growth factor beta receptors in oral submucous fibrosis. Indian J. Otolaryngol. Head Neck Surg. 2022, 74, 2111–2121. [Google Scholar]
- Bal-Demirci, T. Synthesis, spectral characterization of the zinc (II) mixed-ligand complexes of N (4)-allyl thiosemicarbazones and N, N, N′, N′-tetramethylethylenediamine, and crystal structure of the novel [ZnL2 (tmen)] compound. Polyhedron 2008, 27, 440–446. [Google Scholar]
- Khan, T.; Lawrence, A.J.; Azad, I.; Raza, S.; Joshi, S.; Khan, A.R. Computational Drug Designing and Prediction of Important Parameters using in silico methods—A Review. Curr. Comput. Aided Drug Des. 2019, 15, 384–397. [Google Scholar]
- Qazi, S.; Raza, K. Translational bioinformatics in healthcare: Past, present, and future. In Translational Bioinformatics in Healthcare and Medicine; Academic Press: Cambridge, MA, USA, 2012; pp. 1–12. [Google Scholar]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Bytheway, I.; Darley, M.G.; Popelier, P.L. The calculation of polar surface area from first principles: An application of quantum chemical topology to drug design. ChemMedChem Chem. Enabling Drug Discov. 2008, 3, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 2000, 43, 3714–3717. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.; Dixit, S.; Ahmad, R.; Raza, S.; Azad, I.; Joshi, S.; Khan, A.R. Molecular docking, PASS analysis, bioactivity score prediction, synthesis, characterization and biological activity evaluation of a functionalized 2-butanone thiosemicarbazone ligand and its complexes. J. Chem. Biol. 2017, 10, 91–104. [Google Scholar] [CrossRef]
- Sabe, V.T.; Ntombela, T.; Jhamba, L.A.; Maguire, G.E.; Govender, T.; Naicker, T.; Kruger, H.G. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur. J. Med. Chem. 2021, 224, 113705. [Google Scholar] [CrossRef]
- Hansch, C.; Rockwell, S.D.; Jow, P.Y.; Leo, A.; Steller, E.E. Substituent constants for correlation analysis. J. Med. Chem. 1977, 20, 304–306. [Google Scholar] [CrossRef]
- Khan, T.; Azad, I.; Ahmad, R.; Raza, S.; Dixit, S.; Joshi, S.; Khan, A.R. Synthesis, Characterization, Computational Studies And Biological Activity Evaluation Of Cu, Fe, Co And Zn Complexes With 2-Butanone Thiosemicarbazone And 1, 10- Phenanthroline Ligands As Anticancer And Antibacterial Agent. Excli J. 2018, 17, 331–348. [Google Scholar]
- Azad, I.; Khan, T.; Ahmad, N.; Khan, A.R.; Akhter, Y. Updates on drug designing approach through computational strategies: A review. Future Sci. OA 2023, 9, FSO862. [Google Scholar] [CrossRef]
- Nabati, M.; Sabahnoo, H.; Lohrasbi, E.; Mazidi, M. Structural Properties Study and Spectroscopic (FT-IR and UV-Vis) Profiling of the Novel Antagonist LY2157299 as a Transforming Growth Factor-beta (TGF-beta) Receptor I Kinase Inhibitor by Quantum-mechanical (QM) and Molecular Docking Techniques. Chem. Method. 2019, 3, 383–397. [Google Scholar]
- Khan, T.; Azad, I.; Ahmad, R.; Lawrence, A.J.; Azam, M.; Wabaidur, S.M.; Al-Resayes, S.I.; Raza, S.; Khan, A.R. Molecular structure simulation of (E)-2-(butan-2-ylidene) hydrazinecarbothioamide using the DFT approach, and antioxidant potential assessment of its complexes. J. King Saud Univ. Sci. 2021, 33, 101313. [Google Scholar] [CrossRef]
- Khan, T.; Ahmad, R.; Azad, I.; Raza, S.; Joshi, S.; Khan, A.R. Mixed Ligand-metal Complexes of 2-(butan-2-ylidene) Hydrazinecarbothioamide-Synthesis, Characterization, Computer-Aided Drug Character Evaluation and in vitro Biological Activity Assessment. Curr. Comput. Aided Drug Des. 2021, 17, 107–122. [Google Scholar] [CrossRef]
- Khan, T.; Lawrence, A.J.; Azad, I.; Raza, S.; Khan, A.R. Molecular docking simulation with Special Reference to flexible Docking Approach. JSM Chem. 2018, 6, 1053. [Google Scholar]
S. No. | Chemical Formula | Name of the Ligand |
---|---|---|
1 | C6H11N3OS | Acetyl-acetone thiosemicarbazone |
2 | C8H9N3S | Benzaldehyde thiosemicarbazone |
3 | C9H11N3O2S | Vanillin thiosemicarbazone |
4 | C8H7Cl2N3S | 2,4-dichlorobenzaldehyde thiosemicarbazone |
5 | C8H7Cl2N3S | 2,6-dichlorobenzaldehyde thiosemicarbazone |
6 | C10H14N4S | 4-(dimethylamine) benzaldehyde thiosemicarbazone |
7 | C9H11N3S | Acetophenone thiosemicarbazone |
8 | C10H10N4S | Indole-3-carboxaldehyde thiosemicarbazone |
9 | C2H5N3S | Formaldehyde thiosemicarbazone |
10 | C8H9N3OS (L1) | Salicylaldehydethiosemicarbazone |
11 | C13H7N3OS (L2) | Acenaphthenequinonethiosemicarbazone |
12 | C7H7ClN4OS (L3) | 2-chloronicotinic acid thiosemicarbazone |
S. No. | Compound | Volume | TPSA | MW | M Log p | nOHNH | nON | nRB |
---|---|---|---|---|---|---|---|---|
1 | C6H11N3OS | 156.35 | 67.48 | 173.24 | 0.02 | 3 | 4 | 4 |
2 | C8H9N3S | 158.86 | 50.41 | 179.25 | 1.88 | 3 | 3 | 3 |
3 | C9H11N3O2S | 192.42 | 79.88 | 225.27 | 1.22 | 4 | 5 | 4 |
4 | C8H7Cl2N3S | 185.93 | 50.41 | 248.14 | 3.17 | 3 | 3 | 3 |
5 | C8H7Cl2N3S | 185.93 | 50.41 | 248.14 | 3.14 | 3 | 3 | 3 |
6 | C10H14N4S | 284.76 | 53.65 | 222.32 | 1.99 | 3 | 4 | 4 |
7 | C9H11N3S | 175.42 | 50.41 | 193.28 | 1.80 | 3 | 3 | 3 |
8 | C10H10N4S | 187.83 | 66.20 | 218.28 | 2.03 | 4 | 4 | 3 |
9 | C2H5N3S | 87.76 | 50.41 | 103.15 | 0.23 | 3 | 3 | 2 |
10 | C8H9N3OS (L1) | 166.87 | 70.64 | 195.25 | 1.82 | 4 | 4 | 3 |
11 | C13H7N3OS (L2) | 210.99 | 67.48 | 255.30 | 2.48 | 3 | 4 | 2 |
12 | C7H7ClN4OS (L3) | 176.25 | 83.53 | 230.68 | 0.51 | 4 | 5 | 3 |
13 | [Fe(L1)2]SO4 | 428.39 | 201.43 | 617.30 | −1.44 | 8 | 14 | 4 |
14 | [Co(L1)2]Cl2 | 398.10 | 123.03 | 524.37 | 2.61 | 8 | 8 | 4 |
15 | [Cu(L1)2]SO4 | 409.58 | 175.64 | 554.13 | 0.18 | 8 | 12 | 4 |
16 | [Zn(L1)2]SO4 | 409.58 | 175.64 | 555.98 | 0.90 | 8 | 12 | 4 |
17 | [Fe(L2)2]SO4 | 497.87 | 169.33 | 666.54 | 1.38 | 6 | 12 | 2 |
18 | [Co(L2)2]Cl2 | 486.38 | 116.72 | 644.48 | 4.09 | 6 | 8 | 2 |
19 | [Cu(L2)2]SO4 | 497.87 | 169.33 | 674.25 | 1.66 | 6 | 12 | 2 |
20 | [Zn(L2)2]SO4 | 497.87 | 169.33 | 676.09 | 2.38 | 6 | 12 | 2 |
21 | [Fe(L3)2]SO4 | 428.39 | 201.43 | 617.30 | −1.44 | 8 | 14 | 4 |
22 | [Co(L3)2]Cl2 | 416.91 | 148.82 | 595.23 | 1.27 | 8 | 10 | 4 |
23 | [Cu(L3)2]SO4 | 428.39 | 201.43 | 625.00 | −1.16 | 8 | 14 | 4 |
24 | [Zn(L3)2]SO4 | 428.39 | 201.43 | 626.85 | −0.44 | 8 | 14 | 4 |
S. No. | Compound | Physiochemical Properties | Medicinal Feasibility | ||
---|---|---|---|---|---|
FRACTION Csp3 | Molar Refractivity | PAINS | Synthetic Accessibility | ||
1 | C6H11N3OS | 0.50 | 48.14 | 0 alert | 2.92 |
2 | C8H9N3S | 0.00 | 53.20 | 0 alert | 2.17 |
3 | C9H11N3O2S | 0.11 | 61.72 | 1 alert | 2.24 |
4 | C8H7Cl2N3S | 0.00 | 63.22 | 0 alert | 2.43 |
5 | C8H7Cl2N3S | 0.00 | 63.22 | 0 alert | 2.39 |
6 | C10H14N4S | 0.20 | 67.41 | 0 alert | 2.17 |
7 | C9H11N3S | 0.11 | 58.01 | 0 alert | 2.13 |
8 | C10H10N4S | 0.00 | 65.06 | 0 alert | 2.12 |
9 | C2H5N3S | 0.00 | 28.71 | 0 alert | 2.83 |
10 | C8H9N3OS (L1) | 0.00 | 55.22 | 1 alert | 2.21 |
11 | C13H7N3OS (L2) | 0.00 | 73.98 | 1 alert | 2.68 |
12 | C7H7ClN4OS (L3) | 0.00 | 57.58 | 0 alert | 2.28 |
13 | [Fe(L1)2]SO4 | 0.25 | 131.03 | 1 alert | 5.70 |
14 | [Co(L1)2]Cl2 | 0.25 | 131.61 | 1 alert | 5.59 |
15 | [Cu(L1)2]SO4 | 0.25 | 131.03 | 1 alert | 5.60 |
16 | [Zn(L1)2]SO4 | 0.25 | 131.03 | 1 alert | 5.55 |
17 | [Fe(L2)2]SO4 | 0.15 | 168.55 | 0 alert | 6.56 |
18 | [Co(L2)2]Cl2 | 0.15 | 169.12 | 0 alert | 6.48 |
19 | [Cu(L2)2]SO4 | 0.15 | 168.55 | 0 alert | 6.45 |
20 | [Zn(L2)2]SO4 | 0.15 | 168.55 | 0 alert | 6.44 |
21 | [Fe(L3)2]SO4 | 0.29 | 134.92 | 0 alert | 5.90 |
22 | [Co(L3)2]Cl2 | 0.29 | 135.49 | 0 alert | 5.76 |
23 | [Cu(L3)2]SO4 | 0.29 | 134.92 | 0 alert | 5.83 |
24 | [Zn(L3)2]SO4 | 0.29 | 134.92 | 0 alert | 5.82 |
S. No. | Compound | HIA | Caco-2 | BBB | HOB |
---|---|---|---|---|---|
1 | C6H11N3OS | (+) 0.9342 | (−) 0.6104 | (+) 0.9793 | (+) 0.6857 |
2 | C8H9N3S | (+) 0.9692 | (+) 0.9335 | (−) 0.9828 | (+) 0.8000 |
3 | C9H11N3O2S | (+) 0.9785 | (+) 0.7591 | (+) 0.9731 | (+) 0.6286 |
4 | C8H7Cl2N3S | (+) 0.9694 | (+) 0.8509 | (+) 0.9773 | (+) 0.7000 |
5 | C8H7Cl2N3S | (+) 0.9694 | (+) 0.9434 | (+) 0.9773 | (+) 0.8857 |
6 | C10H14N4S | (+) 0.9700 | (+) 0.8595 | (+) 0.9775 | (+) 0.6857 |
7 | C9H11N3S | (+) 0.9948 | (+) 0.8765 | (+) 0.9844 | (+) 0.7429 |
8 | C10H10N4S | (+) 0.9729 | (+) 0.7011 | (+) 0.9729 | (+) 0.6571 |
9 | C2H5N3S | (+) 0.9014 | (+) 6085 | (+) 0.9844 | (+) 0.7286 |
10 | C8H9N3OS (L1) | (+) 0.9698 | (+) 0.8413 | (+) 0.9732 | (+) 0.7571 |
11 | C13H7N3OS (L2) | (+) 0.9921 | (+) 0.6885 | (+) 0.9749 | (+) 0.7143 |
12 | C7H7ClN4OS (L3) | (+) 0.9910 | (+) 0.5565 | (+) 0.9748 | (+) 0.8571 |
13 | [Fe(L1)2]SO4 | (+) 0.9562 | (−) 0.7028 | (+) 0.9704 | (+) 0.5857 |
14 | [Co(L1)2]Cl2 | (+) 0.9605 | (−) 0.6077 | (+) 0.9730 | (+) 0.6571 |
15 | [Cu(L1)2]SO4 | (+) 0.9562 | (−) 0.7028 | (+) 0.9704 | (+) 0.5143 |
16 | [Zn(L1)2]SO4 | (+) 0.9562 | (−) 0.7028 | (+) 0.9704 | (+) 0.6143 |
17 | [Fe(L2)2]SO4 | (+) 0.9829 | (−) 0.7916 | (+) 0.9689 | (+) 0.5429 |
18 | [Co(L2)2]Cl2 | (+) 0.9847 | (−) 0.7685 | (+) 0.9729 | (+) 0.6000 |
19 | [Cu(L2)2]SO4 | (+) 0.9829 | (−) 0.7916 | (+) 0.9689 | (−) 0.5000 |
20 | [Zn(L2)2]SO4 | (+) 0.9829 | (−) 0.7916 | (+) 0.9689 | (+) 0.6286 |
21 | [Fe(L3)2]SO4 | (+) 0.9463 | (−) 0.7818 | (+) 0.9688 | (+) 0.6000 |
22 | [Co(L3)2]Cl2 | (+) 0.9515 | (−) 0.7468 | (+) 0.9722 | (+) 0.6143 |
23 | [Cu(L3)2]SO4 | (+) 0.9463 | (−) 0.7818 | (+) 0.9688 | (−) 0.5000 |
24 | [Zn(L3)2]SO4 | (+) 0.9463 | (−) 0.7818 | (+) 0.9688 | (+) 0.5714 |
S. No. | Compound | Parameters of Bioactivity Score | |||||
---|---|---|---|---|---|---|---|
GPCR Ligand | Ion Channel Modulator | Kinase Inhibitor | Nuclear Receptor Ligand | Protease Inhibitor | Enzyme Inhibitor | ||
1 | C6H11N3OS | −2.60 | −1.86 | −3.10 | −2.98 | −1.88 | −1.04 |
2 | C8H9N3S | −2.85 | −1.59 | −1.86 | −2.42 | −1.60 | −0.91 |
3 | C9H11N3O2S | −1.51 | −1.25 | −1.30 | −1.67 | −1.26 | −0.59 |
4 | C8H7Cl2N3S | −1.72 | −1.35 | −1.53 | −2.08 | −1.40 | −0.77 |
5 | C8H7Cl2N3S | −1.62 | −1.30 | −1.55 | −2.01 | −1.33 | −0.71 |
6 | C10H14N4S | −1.48 | −1.21 | −1.24 | −1.70 | −1.17 | −0.62 |
7 | C9H11N3S | −1.83 | −1.42 | −1.93 | −1.96 | −1.22 | −0.70 |
8 | C10H10N4S | −1.14 | −1.04 | −1.04 | −1.66 | −1.07 | −0.41 |
9 | C2H5N3S | −4.01 | −3.94 | −3.96 | −4.07 | −3.74 | −3.72 |
10 | C8H9N3OS (L1) | −1.79 | −1.55 | −1.63 | −1.99 | −1.33 | −0.74 |
11 | C13H7N3OS (L2) | −0.94 | −0.94 | −0.96 | −1.21 | −1.02 | −0.43 |
12 | C7H7ClN4OS (L3) | −1.41 | −0.69 | −1.24 | −1.79 | −1.04 | −0.46 |
13 | [Fe(L1)2]SO4 | 0.21 | −0.04 | −0.05 | −0.07 | 0.18 | 0.11 |
14 | [Co(L1)2]Cl2 | 0.06 | −0.03 | −0.04 | −0.07 | 0.05 | 0.01 |
15 | [Cu(L1)2]SO4 | 0.16 | −0.04 | −0.05 | −0.07 | 0.18 | 0.16 |
16 | [Zn(L1)2]SO4 | 0.16 | −0.04 | −0.05 | −0.07 | 0.18 | 0.23 |
17 | [Fe(L2)2]SO4 | 0.11 | −0.47 | −0.33 | −0.38 | 0.06 | −0.10 |
18 | [Co(L2)2]Cl2 | 0.04 | −0.24 | −0.20 | −0.25 | −0.05 | −0.11 |
19 | [Cu(L2)2]SO4 | 0.07 | −0.47 | −0.33 | −0.38 | 0.06 | −0.12 |
20 | [Zn(L2)2]SO4 | 0.07 | −0.47 | −0.33 | −0.38 | 0.06 | −0.06 |
21 | [Fe(L3)2]SO4 | 0.25 | 0.12 | 0.04 | −0.14 | 0.20 | 0.22 |
22 | [Co(L3)2]Cl2 | 0.12 | 0.15 | 0.06 | −0.15 | 0.08 | 0.05 |
23 | [Cu(L3)2]SO4 | 0.20 | 0.12 | 0.04 | −0.14 | 0.20 | 0.19 |
24 | [Zn(L3)2]SO4 | 0.20 | 0.12 | 0.04 | −0.14 | 0.20 | 0.26 |
S. No. | Chemical Formula | Binding Energy (kJ/mol) Against Target Protein | |
---|---|---|---|
Transforming Growth Factor Beta | Janus Kinase | ||
1. | C6H11N3OS | −5.1 | −5.3 |
2. | C8H9N3S | −6.2 | −6.2 |
3. | C9H11N3O2S | −6.2 | −6.6 |
4. | C8H7Cl2N3S | −6.6 | −6.4 |
5. | C8H7Cl2N3S | −6.3 | −6.7 |
6. | C10H14N4S | −6.1 | −6.3 |
7. | C9H11N3S | −6.5 | −6.3 |
8. | C10H10N4S | −7.0 | −7.0 |
9. | C2H5N3S | −4.1 | −3.9 |
10. | C8H9N3OS (L1) | −6.1 | −6.3 |
11. | C13H7N3OS(L2) | −7.8 | −8.5 |
12. | C7H7ClN40S(L3) | −6.1 | −6.3 |
13. | [Fe(L1)2]SO4 | −6.5 | −7.8 |
14. | [Co(L1)2]Cl2 | −6.3 | −6.1 |
15. | [Cu(L1)2]SO4 | −6.3 | −6.7 |
16. | [Zn(L1)2]SO4 | −6.3 | −6.3 |
17. | [Fe(L2)2]SO4 | −8.4 | −7.6 |
18. | [Co(L2)2]Cl2 | −6.3 | −6.2 |
19. | [Cu(L2)2]SO4 | −5.1 | −7.1 |
20. | [Zn(L2)2]SO4 | −6.2 | −6.2 |
21. | [Fe(L3)2]SO4 | −6.2 | −6.2 |
22. | [Co(L3)2]Cl2 | −6.5 | −7.5 |
23. | [Cu(L3)2]SO4 | −7.0 | −7.4 |
24. | [Zn(L3)2]SO4 | −6.3 | −6.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veg, E.; Hashmi, K.; Satya; Joshi, S.; Khan, T. Computational Drug-Likeness Studies of Selected Thiosemicarbazones: A Sustainable Approach for Drug Designing. Eng. Proc. 2025, 87, 35. https://doi.org/10.3390/engproc2025087035
Veg E, Hashmi K, Satya, Joshi S, Khan T. Computational Drug-Likeness Studies of Selected Thiosemicarbazones: A Sustainable Approach for Drug Designing. Engineering Proceedings. 2025; 87(1):35. https://doi.org/10.3390/engproc2025087035
Chicago/Turabian StyleVeg, Ekhlakh, Kulsum Hashmi, Satya, Seema Joshi, and Tahmeena Khan. 2025. "Computational Drug-Likeness Studies of Selected Thiosemicarbazones: A Sustainable Approach for Drug Designing" Engineering Proceedings 87, no. 1: 35. https://doi.org/10.3390/engproc2025087035
APA StyleVeg, E., Hashmi, K., Satya, Joshi, S., & Khan, T. (2025). Computational Drug-Likeness Studies of Selected Thiosemicarbazones: A Sustainable Approach for Drug Designing. Engineering Proceedings, 87(1), 35. https://doi.org/10.3390/engproc2025087035