Influence of Dispersant and Surfactant on nZVI Characterization by Dynamic Light Scattering †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Extract Preparation
2.3. nZVI Synthesis
2.4. Dynamic Light Scattering Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tesnim, D.; Hédi, B.A.; Cid-Samamed, A. In-Depth Review of Nanoscale Zero-Valent Iron (NZVI) for Environmental Remediation. Preprint 2024. [Google Scholar] [CrossRef]
- Stefaniuk, M.; Oleszczuk, P.; Ok, Y.S. Review on nano zerovalent iron (nZVI): From synthesis to environmental applications. Chem. Eng. J. 2016, 287, 618–632. [Google Scholar] [CrossRef]
- Liu, M.; Chen, G.; Xu, L.; He, Z.; Ye, Y. Environmental remediation approaches by nanoscale zero valent iron (nZVI) based on its reductivity: A review. RSC Adv. 2024, 14, 21118–21138. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X. Green synthesis of modified polyethylene packing supported tea polyphenols-NZVI for nitrate removal from wastewater: Characterization and mechanisms. Sci. Total Environ. 2022, 806, 150596. [Google Scholar] [CrossRef]
- Mandal, S.; Pu, S.; Shangguan, L.; Liu, S.; Ma, H.; Adhikari, S.; Hou, D. Synergistic construction of green tea biochar supported nZVI for immobilization of lead in soil: A mechanistic investigation. Environ. Int. 2020, 135, 105374. [Google Scholar] [CrossRef]
- Huang, L.; Luo, F.; Chen, Z.; Megharaj, M.; Naidu, R. Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 154–159. [Google Scholar] [CrossRef]
- Zhao, N.; Liu, Z.; Yu, T.; Yan, F. Spent coffee grounds: Present and future of environmentally friendly applications on industries—A review. Trends Food Sci. Technol. 2024, 143, 104312. [Google Scholar] [CrossRef]
- Tavares, C.S.; Martins, A.; Faleiro, M.L.; Miguel, M.G.; Duarte, L.C.; Gameiro, J.A.; Roseiro, L.B.; Figueiredo, A.C. Bioproducts from forest biomass: Essential oils and hydrolates from wastes of Cupressus lusitanica Mill. and Cistus ladanifer L. Ind. Crops Prod. 2020, 144, 112034. [Google Scholar] [CrossRef]
- Tavares, C.S.; Martins, A.; Miguel, M.G.; Carvalheiro, F.; Duarte, L.C.; Gameiro, J.A.; Figueiredo, A.C.; Roseiro, L.B. Bioproducts from forest biomass, I.I. Bioactive compounds from the steam-distillation by-products of Cupressus lusitanica Mill. and Cistus ladanifer L. wastes. Ind. Crops Prod. 2020, 158, 112991. [Google Scholar] [CrossRef]
- Fernandes, F.; Gorissen, K.; Delerue-Matos, C.; Grosso, C. Valorisation of Agro-Food By-Products for the Extraction of Phenolic Compounds. Biol. Life Sci. Forum 2022, 18, 61. [Google Scholar] [CrossRef]
- Pavlović, M.D.; Buntić, A.V.; Šiler-Marinković, S.S.; Dimitrijević-Branković, S.I. Ethanol influenced fast microwave-assisted extraction for natural antioxidants obtaining from spent filter coffee. Sep. Purif. Technol. 2013, 118, 503–510. [Google Scholar]
- Andrade, D.; Gil, C.; Breitenfeld, L.; Domingues, F.; Duarte, A.P. Bioactive extracts from Cistus ladanifer and Arbutus unedo L. Ind. Crops Prod. 2009, 30, 165–167. [Google Scholar]
- Ibrahim, H.M.; Awad, M.; Al-farraj, A.S.; Al-turki, A.M. Stability and dynamic aggregation of bare and stabilized zero-valent iron nanoparticles under variable solution chemistry. Nanomaterials 2020, 10, 192. [Google Scholar] [CrossRef]
- Phenrat, T.; Saleh, N.; Sirk, K.; Tilton, R.D.; Lowry, G.V. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ. Sci. Technol. 2007, 41, 284–290. [Google Scholar] [CrossRef]
- Soukupova, J.; Zboril, R.; Medrik, I.; Filip, J.; Safarova, K.; Ledl, R.; Mashlan, M.; Nosek, J.; Cernik, M. Highly concentrated, reactive and stable dispersion of zero-valent iron nanoparticles: Direct surface modification and site application. Chem. Eng. J. 2015, 262, 813–822. [Google Scholar]
- Jia, Z.; Li, J.; Gao, L.; Yang, D.; Kanaev, A. Dynamic Light Scattering: A Powerful Tool for In Situ Nanoparticle Sizing. Colloids Interfaces 2023, 7, 15. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar]
- Mahl, D.; Diendorf, J.; Meyer-Zaika, W.; Epple, M. Possibilities and limitations of different analytical methods for the size determination of a bimodal dispersion of metallic nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2011, 377, 386–392. [Google Scholar]
- Mahmoud, R.; Kotp, A.A.; El-Ela, F.I.A.; Farghali, A.A.; Moaty, S.A.; Zahran, H.; Amin, R. Green synthesis of iron nanoparticles of clove and green coffee origin with an in vivo hepatoprotective investigation. J. Environ. Chem. Eng. 2021, 9, 106320. [Google Scholar]
- Ruiz-Torres, C.A.; Araujo-Martínez, R.F.; Martínez-Castañón, G.A.; Morales-Sánchez, J.E.; Lee, T.-J.; Shin, H.-S.; Hwang, Y.; Hurtado-Macías, A.; Ruiz, F. A cost-effective method to prepare size-controlled nanoscale zero-valent iron for nitrate reduction. Environ. Eng. Res. 2019, 24, 463–473. [Google Scholar] [CrossRef]
- Kocur, C.M.; Chowdhury, A.I.; Sakulchaicharoen, N.; Boparai, H.K.; Weber, K.P.; Sharma, P.; Krol, M.M.; Austrins, L.; Peace, C.; Sleep, B.E.; et al. Characterization of nZVI mobility in a field scale test. Environ. Sci. Technol. 2014, 48, 2862–2869. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.M.; Al-Issa, A.A.; Al-Farraj, A.S.; Alghamdi, A.G.; Al-Turki, A.M. Effect of Stabilized nZVI Nanoparticles on the Reduction and Immobilization of Cr in Contaminated Soil: Column Experiment and Transport Modeling. Nanomaterials 2024, 14, 862. [Google Scholar] [CrossRef] [PubMed]
- Moura, C.C.; Salazar-Bryam, A.M.; Piazza, R.D.; dos Santos, C.C.; Jafelicci, M., Jr.; Marques, R.F.C.; Contiero, J. Rhamnolipids as Green Stabilizers of nZVI and Application in the Removal of Nitrate from Simulated Groundwater. Front. Bioeng. Biotechnol. 2022, 10, 794460. [Google Scholar]
Sample | Size (nm) | Intensity (%) | PDI | ZP (mV) |
---|---|---|---|---|
SCG met | 514.30 ± 135.39 c | 100 | 0.43 ± 0.08 b | −6.72 ± 2.76 c |
SCG met T | 2112.33 ± 483.02 a | 90.1 | 0.52 ± 0.14 a,b | −4.23 ± 0.19 b,c |
SCG w | 565.60 ± 80.84 c | 73.8 | 0.56 ± 0.08 a | −19.57 ± 0.95 d |
SCG w T | 14.64 ± 0.76 c | 81.5 | 0.24 ± 0.07 b | −5.99 ± 1.71 c |
CLL met | 1552.00 ± 167.77 a,b | 100 | 0.66 ± 0.03 a,b | 17.48 ± 0.47 a |
CLL met T | 1436.00 ± 340.99 b | 95.8 | 0.29 ± 0.08 b | −0.82 ± 0.12 b |
CLL w | 218.07 ± 43.02 c | 84.0 | 0.43 ± 0.08 b | −4.30 ± 1.75 c |
CLL w T | 13.4 ± 4.26 c | 86.4 | 0.31 ± 0.04 b | −5.51 ± 0.86 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, F.; Oliveira, A.I.; Delerue-Matos, C.; Grosso, C. Influence of Dispersant and Surfactant on nZVI Characterization by Dynamic Light Scattering. Eng. Proc. 2025, 87, 33. https://doi.org/10.3390/engproc2025087033
Fernandes F, Oliveira AI, Delerue-Matos C, Grosso C. Influence of Dispersant and Surfactant on nZVI Characterization by Dynamic Light Scattering. Engineering Proceedings. 2025; 87(1):33. https://doi.org/10.3390/engproc2025087033
Chicago/Turabian StyleFernandes, Filipe, Ana Isabel Oliveira, Cristina Delerue-Matos, and Clara Grosso. 2025. "Influence of Dispersant and Surfactant on nZVI Characterization by Dynamic Light Scattering" Engineering Proceedings 87, no. 1: 33. https://doi.org/10.3390/engproc2025087033
APA StyleFernandes, F., Oliveira, A. I., Delerue-Matos, C., & Grosso, C. (2025). Influence of Dispersant and Surfactant on nZVI Characterization by Dynamic Light Scattering. Engineering Proceedings, 87(1), 33. https://doi.org/10.3390/engproc2025087033