Design and Optimisation of Inverted U-Shaped Patch Antenna for Ultra-Wideband Ground-Penetrating Radar Applications †
Abstract
1. Introduction
2. Materials and Methods
3. Results
Radiation Pattern
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jol, H.M. Ground Penetrating Radar Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Ali, H.; Ideris, N.S.M.; Zaidi, A.A.; Azalan, M.Z.; Amran, T.T.; Ahmad, M.; Rahim, N.A.; Shukor, S.A. Ground penetrating radar for buried utilities detection and mapping: A review. J. Phys. Conf. Ser. 2021, 2107, 012056. [Google Scholar]
- Pryshchenko, O.A.; Plakhtii, V.; Dumin, O.M.; Pochanin, G.P.; Ruban, V.P.; Capineri, L.; Crawford, F. Implementation of an artificial intelligence approach to GPR systems for landmine detection. Remote Sens. 2022, 14, 4421. [Google Scholar] [CrossRef]
- Manataki, M.; Vafidis, A.; Sarris, A. GPR data interpretation approaches in archaeological prospection. Appl. Sci. 2021, 11, 7531. [Google Scholar] [CrossRef]
- Spears, M.; Hedjazi, S.; Taheri, H. Ground penetrating radar applications and implementations in civil construction. J. Struct. Integr. Maint. 2023, 8, 36–49. [Google Scholar] [CrossRef]
- Ding, C.; Li, J.; Hu, R. Moon-based ground-penetrating radar observation of the latest volcanic activity at the Chang’E-4 landing site. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4600410. [Google Scholar]
- Hamran, S.E.; Paige, D.A.; Amundsen, H.E.; Berger, T.; Brovoll, S.; Carter, L.; Damsgård, L.; Dypvik, H.; Eide, J.; Eide, S.; et al. Radar imager for Mars’ subsurface experiment—RIMFAX. Space Sci. Rev. 2020, 216, 128. [Google Scholar] [CrossRef]
- Casademont, T.M.; Dypvik, H.; Eide, S.; Berger, T.; Hamran, S.E. Martian ground penetrating radar: Towards automated diffraction detection for dielectric permittivity. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4511210. [Google Scholar]
- Ciarletti, V.; Corbel, C.; Plettemeier, D.; Cais, P.; Clifford, S.M.; Hamran, S.E. WISDOM GPR designed for shallow and high-resolution sounding of the Martian subsurface. Proc. IEEE 2011, 99, 824–836. [Google Scholar] [CrossRef]
- Guan, W.; Su, Y.; Li, J.; Dai, S.; Ding, C.; Liu, Y. Applications of ground-penetrating radar in asteroid and comet exploration. Remote Sens. 2024, 16, 2188. [Google Scholar] [CrossRef]
- Hertl, I.; Strycek, M. UWB antennas for ground penetrating radar application. In Proceedings of the 2007 19th International Conference on Applied Electromagnetics and Communications, Dubrovnik, Croatia, 24–26 September 2007; pp. 1–4. [Google Scholar]
- Ali, J.; Abdullah, N.; Ismail, M.Y.; Mohd, E.; Shah, S.M. Ultra-wideband antenna design for GPR applications: A review. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 392–400. [Google Scholar] [CrossRef]
- Chakrabarti, N.; Kalra, S.; Saxena, S.; Tripathy, M.R. Ultra-wideband antenna for a ground penetrating radar. In Proceedings of the 2016 Thirteenth International Conference on Wireless and Optical Communications Networks (WOCN), Hyderabad, India, 21–23 July 2016; pp. 1–6. [Google Scholar]
- Sutham, T.; Thaiwirot, W.; Akkaraekthalin, P. Design of Ultra-Wideband Inverted U-Shaped Slot Antenna with Reflector for GPR Applications. In Proceedings of the 2022 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Prachuap Khiri Khan, Thailand, 24–27 May 2022; pp. 1–4. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Travassos, X.; Avila, S.; Adriano, R.d.S.; Ida, N. A review of ground penetrating radar antenna design and optimization. J. Microw. Optoelectron. Electromagn. Appl. 2018, 17, 385–402. [Google Scholar] [CrossRef]
- Abdelgwad, A.H. Microstrip patch antenna enhancement techniques. Int. J. Electron. Commun. Eng. 2018, 12, 703–710. [Google Scholar]
- Cao, P.; Huang, Y.; Zhang, J. A UWB monopole antenna for GPR application. In Proceedings of the 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 26–30 March 2012; pp. 2837–2840. [Google Scholar]
- Ismail, O.; Youssef, L.; Otman, O.; Aghanim, A. Design of a Circular Patch Antenna with a reflector for GPR applications. ITM Web Conf. 2022, 48, 01004. [Google Scholar]
- Khalid, N.; Ibrahim, S.; Karim, M. Directional and wideband antenna for ground penetrating radar (GPR) applications. In Proceedings of the 2016 3rd International Conference on Electronic Design (ICED), Phuket, Thailand, 11–12 August 2016; pp. 203–206. [Google Scholar]
- Karim, M.A.; Malek, M.F.; Jamlos, M.; Seng, L.; Saudin, N. Design of ground penetrating radar antenna for buried object detection. In Proceedings of the 2013 Ieee International Rf and Microwave Conference (RFM), Penang, Malaysia, 9–11 December 2013; pp. 253–257. [Google Scholar]
- Trivedi, D.; Gotra, S.; Phartiyal, G.S.; Singh, D. An Ultra-Wideband Dual-layer Microstrip Planar Antenna for Radar Imaging System. In Proceedings of the 2022 IEEE Conference on Antenna Measurements and Applications (CAMA), Guangzhou, China, 14–17 December 2022; pp. 1–4. [Google Scholar]
- Raza, A.; Lin, W.; Chen, Y.; Yanting, Z.; Chattha, H.T.; Sharif, A.B. Wideband tapered slot antenna for applications in ground penetrating radar. Microw. Opt. Technol. Lett. 2020, 62, 2562–2568. [Google Scholar]
- Raza, A.; Lin, W.; Ishfaq, M.; Inam, M.; Masud, F.; Dahri, M. A Wideband Reflector-Backed Antenna for Applications in GPR. Int. J. Antennas Propag. 2021, 2021, 3531019. [Google Scholar]
- Nayak, R.; Maiti, S.; Patra, S.K. Design and simulation of compact UWB Bow-tie antenna with reduced end-fire reflections for GPR applications. In Proceedings of the 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 23–25 March 2016; pp. 1786–1790. [Google Scholar]
- Wu, Y.; Shen, F.; Yuan, Y.; Xu, D. An improved modified universal ultra-wideband antenna designed for step frequency continuous wave ground penetrating radar system. Sensors 2019, 19, 1045. [Google Scholar] [CrossRef] [PubMed]
Parameter | Symbol | Value |
---|---|---|
Total length of the substrate | 300.00 mm | |
Total width of the substrate | 200.00 mm | |
Length of the radiating patch | 170.00 mm | |
Width of the radiating patch | 123.00 mm | |
Length of the slot in the patch | 109.00 mm | |
Width of the slot in the patch | 70.00 mm | |
Length of the feed line | 107.00 mm | |
Width of the feed line | 3.14 mm | |
Radius of the top corners of the patch | 60.00 mm | |
Radius of the bottom corners of the patch | 34.00 mm | |
Slot offset from the patch edge | 3.00 mm | |
Length of the ground plane | 106.50 mm | |
Width of the ground plane | 172.70 mm | |
Length of the slot strip in the ground plane | 110.00 mm | |
Width of the slot strip in the ground plane | 20.00 mm |
Sl. No. | Author | Antenna Configuration | Bandwidth (GHz) | Centre Frequency (GHz) | Reflector Used | Overall Antenna Dimensions (mm3) | Maximum Gain |
---|---|---|---|---|---|---|---|
1 | Nayak et al. (2016) [25] | Bow-tie | 0.4 to 4.5 | 1.5 | No | 510 × 220 × 5 | 7 dB @ 2.5 GHz |
2 | Khalid et al. (2016) [20] | Bow-tie patch | 0.5 to 3 | 2.5 | Yes | 100 × 140 × 37 | 8.314 dB @ 1.75 GHz |
3 | Wu et al. (2019) [26] | Bow-tie | 0.64 to 2.2 | - | Yes | 177.75 × 91.5 × 74.25 | 5.1 dB |
4 | Raza et al. (2021) [24] | Tapered feed | 0.6 to 4.6 | - | Yes | 180 × 220 × 50 | 7 dB |
5 | Trivedi et al. (2022) [22] | Circular patch | 1.03 to 9 | - | Yes | 106.4 × 154.4 × 50 | 8.65 dB |
6 | Sutham et al. (2022) [14] | Inverted U-shaped patch | 0.33 to 3.59 | - | Yes | 260 × 300 × 230 | 8.86 dB @ 1.5 GHz |
7 | Present work | Inverted U-shaped patch | 1.13 to 4 | 1.5 | No | 200 × 300 × 1.6 | 5.24 dB @ 1.5 GHz 7.27 dB @ 4 GHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalita, A.J.; Barkataki, N.; Sarma, U. Design and Optimisation of Inverted U-Shaped Patch Antenna for Ultra-Wideband Ground-Penetrating Radar Applications. Eng. Proc. 2025, 87, 25. https://doi.org/10.3390/engproc2025087025
Kalita AJ, Barkataki N, Sarma U. Design and Optimisation of Inverted U-Shaped Patch Antenna for Ultra-Wideband Ground-Penetrating Radar Applications. Engineering Proceedings. 2025; 87(1):25. https://doi.org/10.3390/engproc2025087025
Chicago/Turabian StyleKalita, Ankur Jyoti, Nairit Barkataki, and Utpal Sarma. 2025. "Design and Optimisation of Inverted U-Shaped Patch Antenna for Ultra-Wideband Ground-Penetrating Radar Applications" Engineering Proceedings 87, no. 1: 25. https://doi.org/10.3390/engproc2025087025
APA StyleKalita, A. J., Barkataki, N., & Sarma, U. (2025). Design and Optimisation of Inverted U-Shaped Patch Antenna for Ultra-Wideband Ground-Penetrating Radar Applications. Engineering Proceedings, 87(1), 25. https://doi.org/10.3390/engproc2025087025