Innovative Physics Pedagogy Using Ant Colony Optimization for Wind Power System Methodologies †
Abstract
:1. Introduction
2. Proposes and Materials
2.1. Metaheuristic Algorithm
2.2. Ant Colony Optimization
2.3. Blade Element Theory for Wind Turbines
2.4. Tip-Speed Ratio
3. Methods
3.1. Problem Definition
3.2. Data Collection
3.3. Simulation Setup
3.4. Development of the Ant Colony Optimization Algorithm
3.5. Algorithm Performance Testing
Algorithms 1: Ant colony optimization for compute blade angles of wind turbine |
1 % ACO main loop 2 for iter = 1:num_iterations 3 solutions = zeros(num_ants, 1); 4 power_values = zeros(num_ants, 1); 5 % Each ant selects an angle based on pheromone and heuristic info 6 for ant = 1:num_ants 7 probabilities = (pheromones .^ alpha) .* (heuristic_info .^ beta); 8 probabilities = probabilities/sum(probabilities); 9 cumulative_prob = cumsum(probabilities); 10 random_choice = rand; 11 selected_index = find(random_choice <= cumulative_prob, 1); 12 selected_angle = angles(selected_index); 13 % Store the solution and calculate its power 14 solutions(ant) = selected_angle; 15 power_values(ant) = objective_function(selected_angle); 16 % Update the best solution found 17 if power_values(ant) > best_power 18 best_power = power_values(ant); 19 best_angle = selected_angle; 20 end |
4. Results and Discussions
4.1. Case Study
4.2. Calculation Using the ACO Algorithm
4.3. Evaluation and Assessment of Student Learning Outcomes
4.4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eirgash, M.A.; Toğan, V. A novel oppositional teaching learning strategy based on the golden ratio to solve the Time-Cost-Environmental impact Trade-Off optimization problems. Expert Syst. Appl. 2023, 224, 119995. [Google Scholar] [CrossRef]
- Manickam, P.S.; Ghosh, G.; Shetty, G.M.; Chowdhury, A.R.; Roy, S. Biomechanical analysis of the novel S-type dynamic cage by implementation of teaching learning based optimization algorithm—An experimental and finite element study. Med. Eng. Phys. 2023, 112, 103955. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Yang, Z.; Yu, H.; Xu, Y.; Wen, G. A novel balanced teaching-learning-based optimization algorithm for optimal design of high efficiency plate-fin heat exchanger. Appl. Therm. Eng. 2024, 256, 124052. [Google Scholar] [CrossRef]
- Mohapatra, S.; Das, D.K.; Singh, A.K. An optimal plate-fin heat exchanger design using opposition-based Orthogonal Learning Kho-Kho Optimization algorithm. Prog. Nucl. Energy 2024, 177, 105416. [Google Scholar] [CrossRef]
- Zhang, Y.; Lee, W.S.; Li, M.; Zheng, L.; Ritenour, M.A. Non-destructive recognition and classification of citrus fruit blemishes based on ant colony optimized spectral information. Postharvest Biol. Technol. 2018, 143, 119–128. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Duan, Z.; Chen, C. A review on multi-objective optimization framework in wind energy forecasting techniques and applications. Energy Convers. Manag. 2020, 224, 113324. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, Y.; Yang, Y.; Cai, C.; Chen, Y. Optimal Configuration of an Off-Grid Hybrid Wind-Hydrogen Energy System: Comparison of Two Systems. Energy Eng. 2021, 118, 1641–1658. [Google Scholar] [CrossRef]
- Kumar, P.G.A.; Jeyanthy, P.A.; Devaraj, D. Hybrid multi-objective method based on ant colony optimization and firefly algorithm for renewable energy sources. Sustain. Comput. Inform. Syst. 2022, 36, 100810. [Google Scholar] [CrossRef]
- Das, G.; De, M.; Mandal, K.K. Multi-objective optimization of hybrid renewable energy system by using novel autonomic soft computing techniques. Comput. Electr. Eng. 2021, 94, 107350. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, Q. Optimization of maintenance scheme for offshore wind turbines considering time windows based on hybrid ant colony algorithm. Ocean Eng. 2022, 263, 112357. [Google Scholar] [CrossRef]
- Lopez, J.C.; Kolios, A. An autonomous decision-making agent for offshore wind turbine blades under leading edge erosion. Renew. Energy 2024, 227, 120525. [Google Scholar] [CrossRef]
- Zhou, G.; Zhou, Y.; Deng, W.; Yin, S.; Zhang, Y. Advances in teaching–learning-based optimization algorithm: A comprehensive survey (ICIC2022). Neurocomputing 2023, 561, 126898. [Google Scholar] [CrossRef]
- Jayachandran, S.; Joshi, B. Customized support vector machine for predicting the employability of students pursuing engineering. Int. J. Inf. Technol. 2024, 16, 3193–3204. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
minimum blade pitch angle in degrees | 0 |
maximum blade pitch angle in degrees | 30 |
number of discrete steps in angle search space | 100 |
Parameters | Value |
---|---|
Wind speed in m/s | 10 |
Air density in kg/m3 | 1.225 |
Blade radius in meters | 20 |
Test | N | S.D. | t | ||
---|---|---|---|---|---|
Pretest | 20 | 8.45 | 2.16 | 7.40 | −14.97 |
Post-test | 20 | 15.85 | 4.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prainetr, N.; Prainetr, S. Innovative Physics Pedagogy Using Ant Colony Optimization for Wind Power System Methodologies. Eng. Proc. 2025, 86, 1. https://doi.org/10.3390/engproc2025086001
Prainetr N, Prainetr S. Innovative Physics Pedagogy Using Ant Colony Optimization for Wind Power System Methodologies. Engineering Proceedings. 2025; 86(1):1. https://doi.org/10.3390/engproc2025086001
Chicago/Turabian StylePrainetr, Natchanun, and Supachai Prainetr. 2025. "Innovative Physics Pedagogy Using Ant Colony Optimization for Wind Power System Methodologies" Engineering Proceedings 86, no. 1: 1. https://doi.org/10.3390/engproc2025086001
APA StylePrainetr, N., & Prainetr, S. (2025). Innovative Physics Pedagogy Using Ant Colony Optimization for Wind Power System Methodologies. Engineering Proceedings, 86(1), 1. https://doi.org/10.3390/engproc2025086001