An Intelligent and Efficient Approach for a Weapon Detection System Using Computer Vision and Edge Computing †
Abstract
1. Introduction
Research Contribution
- The model developed in this research detects weapons such as pistols and rifles in an average time of 1.30 s.
- The model decreases the amount of transmitted data and requires less network bandwidth.
- The model takes an average time of 1.30 s to execute the algorithm compared to 1.76 s for the InceptionNetV2 model.
- The model is able to compare transmission video streams at a rate of 1.8 megabytes per second.
2. Literature Review
3. Overview of the Weapon Detection System
4. Security Weapon Detector Types
5. Overview of Computer Vision
6. Overview of Edge Computing
7. Materials and Methods
7.1. Edge Node
7.2. Dataset
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdulsalam, Y.S.; Hedabou, M. Security and privacy in cloud computing: Technical review. Futur. Internet 2021, 14, 11. [Google Scholar] [CrossRef]
- Al-Dulaimy, A.; Sharma, Y.; Khan, M.G.; Taheri, J. Introduction to edge computing. In Edge Computing: Models, Technologies and Applications; Institution of Engineering and Technology: London, UK, 2020; pp. 3–25. [Google Scholar]
- Alaqil, R.M.; Alsuhaibani, J.A.; Alhumaidi, B.A.; Alnasser, R.A.; Alotaibi, R.D.; Benhidour, H. Automatic gun detection from images using faster r-cnn. In Proceedings of the 2020 First international conference of smart systems and emerging technologies (SMARTTECH), Riyadh, Saudi Arabia, 3–5 November 2020; pp. 149–154. [Google Scholar]
- Arif, E.; Shahzad, S.K.; Mustafa, R.; Jaffar, M.A.; Iqbal, M.W. Deep Neural Networks for Gun Detection in Public Surveillance. Intell. Autom. Soft Comput. 2022, 32, 909–922. [Google Scholar] [CrossRef]
- Arslan, Y.; Canbolat, H. Performance of deep neural networks in audio surveillance. In Proceedings of the 2018 6th International Conference on Control Engineering & Information Technology (CEIT), Istanbul, Turkey, 25–27 October 2018; pp. 1–5. [Google Scholar]
- Atanov, S.K.; Seitbattalov, Z.Y.; Moldabayeva, Z.S. Development an intelligent task offloading system for edge-cloud computing paradigm. In Proceedings of the 2021 16th International Conference on Electronics Computer and Computation (ICECCO), Kaskelen, Kazakhstan, 25–26 November 2021; pp. 1–6. [Google Scholar]
- Brimzhanova, S.S.; Atanov, S.K.; Khuralay, M.; Kobelekov, K.S.; Gagarina, L.G. Cross-platform compilation of pro-gramming language Golang for Raspberry Pi. In Proceedings of the 5th International Conference on Engineering and MIS, Astana Kazakhstan, 6–8 June 2019; pp. 1–5. [Google Scholar]
- Cao, K.; Liu, Y.; Meng, G.; Sun, Q. An overview on edge computing research. IEEE Access 2020, 8, 85714–85728. [Google Scholar] [CrossRef]
- Castillo, A.; Tabik, S.; Pérez, F.; Olmos, R.; Herrera, F. Brightness guided preprocessing for automatic cold steel weapon detection in surveillance videos with deep learning. Neurocomputing 2019, 330, 151–161. [Google Scholar] [CrossRef]
- Dang, T.-V. Smart home management system with face recognition based on arcface model in deep convolutional neural network. J. Robot. Control. 2022, 3, 754–761. [Google Scholar] [CrossRef]
- Debnath, R.; Bhowmik, M.K. Novel framework for automatic localisation of gun carrying by moving person using various indoor and outdoor mimic and real-time views/Scenes. IET Image Process. 2020, 14, 4663–4675. [Google Scholar] [CrossRef]
- Debnath, R.; Bhowmik, M.K. A comprehensive survey on computer vision based concepts, methodologies, analysis and applications for automatic gun/knife detection. J. Vis. Commun. Image Represent. 2021, 78, 103165. [Google Scholar] [CrossRef]
- Duan, Q.; Wang, S.; Ansari, N. Convergence of networking and cloud/edge computing: Status, challenges, and opportunities. IEEE Netw. 2020, 34, 148–155. [Google Scholar] [CrossRef]
- El Den Mohamed, M.K.; Taha, A.; Zayed, H.H. Automatic gun detection approach for video surveillance. Int. J. Sociotechnol. Knowl. Dev. 2020, 12, 49–66. [Google Scholar] [CrossRef]
- Goenka, A.; Sitara, K. Weapon detection from surveillance images using deep learning. In Proceedings of the 2022 3rd International Conference for Emerging Technology (INCET), Belgaum, India, 27–29 May 2022; pp. 1–6. [Google Scholar]
- González, J.L.S.; Zaccaro, C.; Álvarez-García, J.A.; Morillo, L.M.S.; Caparrini, F.S. Real-time gun detection in CCTV: An open problem. Neural Netw. 2020, 132, 297–308. [Google Scholar] [CrossRef]
- Haq, N.U.; Fraz, M.M.; Hashmi, T.S.; Shahzad, M. Orientation aware weapons detection in visual data: A benchmark dataset. Computing 2022, 104, 2581–2604. [Google Scholar] [CrossRef]
- Hnoohom, N.; Chotivatunyu, P.; Jitpattanakul, A. ACF: An armed cctv footage dataset for enhancing weapon detection. Sensors 2022, 22, 7158. [Google Scholar] [CrossRef] [PubMed]
- Ingle, P.Y.; Kim, Y.-G. Real-time abnormal object detection for video surveillance in smart cities. Sensors 2022, 22, 3862. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.G.; Tarabay, F.H.; El-Masry, R.; Abd El Ghany, M.; Salem, M.A.M. Smart Cloud-Edge Video Surveillance System. In Proceedings of the 2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST), Bremen, Germany, 8–10 June 2022; pp. 1–4. [Google Scholar]
- Lamas, A.; Tabik, S.; Montes, A.C.; Pérez-Hernández, F.; García, J.; Olmos, R.; Herrera, F. Human pose estimation for mitigating false negatives in weapon detection in video-surveillance. Neurocomputing 2022, 489, 488–503. [Google Scholar] [CrossRef]
- Nassif, A.B.; Abu Talib, M.; Nasir, Q.; Albadani, H.; Dakalbab, F.M. Machine Learning for Cloud Security: A Systematic Review. IEEE Access 2021, 9, 20717–20735. [Google Scholar] [CrossRef]
- Rahmaniar, W.; Hernawan, A. Real-time human detection using deep learning on embedded platforms: A review. J. Robot. Control 2021, 2, 462–468. [Google Scholar]
- Satyanarayanan, M. The emergence of edge computing. Computer 2017, 50, 30–39. [Google Scholar] [CrossRef]
- Seitbattalov, Z.Y.; Canbolat, H.; Moldabayeva, Z.S.; Kyzyrkanov, A.E. An Intelligent Automatic Number Plate Recognition System Based on Computer Vision and Edge Computing. In Proceedings of the 2022 International Conference on Smart Information Systems and Technologies (SIST), Nur-Sultan, Kazakhstan, 28–30 April 2022; pp. 1–5. [Google Scholar]
- Shah, I.A.; Jhanjhi, N.Z.; Brohi, S.N. IoT Smart Healthcare Security Challenges and Solutions. Advances in Computational Intelligence for the Healthcare Industry 4.0. In Advances in Computational Intelligence for the Healthcare Industry 4.0; IGI Global: Hershey, PA, USA, 2024. [Google Scholar]
- Shah, I.A.; Jhanjhi, N.Z.; Brohi, S.N. Use of AI-Based Drones in Smart Cities. Cybersecurity Issues and Challenges in the Drone Industry. In Cybersecurity Issues and Challenges in the Drone Industry; IGI Global: Hershey, PA, USA, 2024. [Google Scholar]
- Shah, I.A.; Jhanjhi, N.Z.; Rajper, S. Use of Deep Learning Applications for Drone Technology. In Cybersecurity Issues and Challenges in the Drone Industry; IGI Global: Hershey, PA, USA, 2024. [Google Scholar]
- Sharma, A.; Mullana, M.M.U. Emerging Trends in Safety Issues in Cloud the Potentials of Threat Model. Int. J. Future Revolut. Comput. Sci. Commun. Eng. 2020, 3, 260–263. [Google Scholar]
- Veranyurt, O.; Sakar, C.O. Hand-gun detection in images with transfer learning-based convolutional neural networks. In Proceedings of the 2020 28th Signal Processing and Communications Applications Conference (SIU), Gaziantep, Turkey, 5–7 October 2020; pp. 1–4. [Google Scholar]
- Wu, R.; Li, J.; Ablan, C.; Guan, S.; Yao, J. Preprocessing Techniques’ Effect On Overfitting for VGG16 Fast-RCNN Pistol Detection. Int. J. Comput. Appl. 2021, 28, 1. [Google Scholar]
Model | Mean | Quantized Mean Average Precision | Parameters, Millions | Mobile Latency, Milliseconds |
---|---|---|---|---|
EfficientDet-Lite0 | 26.40 | 26.9 | 3.2 | 35 |
EfficientDet-Lite0 | 31.51 | 31.11 | 4.2 | 48 |
EfficientDet-Lite0 | 35.05 | 34.68 | 5.3 | 68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, I.A.; Jhanjhi, N.Z.; Ujjan, R.M.A. An Intelligent and Efficient Approach for a Weapon Detection System Using Computer Vision and Edge Computing. Eng. Proc. 2024, 82, 117. https://doi.org/10.3390/ecsa-11-20526
Shah IA, Jhanjhi NZ, Ujjan RMA. An Intelligent and Efficient Approach for a Weapon Detection System Using Computer Vision and Edge Computing. Engineering Proceedings. 2024; 82(1):117. https://doi.org/10.3390/ecsa-11-20526
Chicago/Turabian StyleShah, Imdad Ali, N. Z. Jhanjhi, and Raja Majid Ali Ujjan. 2024. "An Intelligent and Efficient Approach for a Weapon Detection System Using Computer Vision and Edge Computing" Engineering Proceedings 82, no. 1: 117. https://doi.org/10.3390/ecsa-11-20526
APA StyleShah, I. A., Jhanjhi, N. Z., & Ujjan, R. M. A. (2024). An Intelligent and Efficient Approach for a Weapon Detection System Using Computer Vision and Edge Computing. Engineering Proceedings, 82(1), 117. https://doi.org/10.3390/ecsa-11-20526