A Brief Overview on Polysaccharide-Based Hydrogels in 3D Bioprinting for Biomedical Applications: Cases of Cellulose, Chitosan, and Lignin †
Abstract
1. Introduction
2. Three-Dimensional Bioprinting
3. Polysaccharide-Based Hydrogels in 3D Bioprinting
3.1. Cellulose
3.2. Chitosan
3.3. Lignin
3.4. Comparative Overview of Cellulose, Chitosan, and Lignin for 3D Bioprinting Applications
4. Comparison, Limitations, and Crosslinking Strategies
4.1. Comparison
4.2. Limitations
4.3. Crosslinking Strategies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gu, Z.; Fu, J.; Lin, H.; He, Y. Development of 3D bioprinting: From printing methods to biomedical applications. Asian J. Pharm. Sci. 2020, 15, 529–557. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Petrovic, M.; Davies, I.J. Applications of 3D printing in medicine: A review. Ann. 3D Print. Med. 2024, 14, 100149. [Google Scholar] [CrossRef]
- Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785. [Google Scholar] [CrossRef] [PubMed]
- Fatimi, A.; Okoro, O.V.; Podstawczyk, D.; Siminska-Stanny, J.; Shavandi, A. Natural hydrogel-based bio-Inks for 3D bioprinting in tissue engineering: A review. Gels 2022, 8, 179. [Google Scholar] [CrossRef]
- Loukelis, K.; Koutsomarkos, N.; Mikos, A.G.; Chatzinikolaidou, M. Advances in 3D bioprinting for regenerative medicine applications. Regen. Biomater. 2024, 11, rbae033. [Google Scholar] [CrossRef]
- Gungor-Ozkerim, P.S.; Inci, I.; Zhang, Y.S.; Khademhosseini, A.; Dokmeci, M.R. Bioinks for 3D bioprinting: An overview. Biomater. Sci. 2018, 6, 915–946. [Google Scholar] [CrossRef]
- Caló, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef]
- Fatimi, A.; Tassin, J.F.; Quillard, S.; Axelos, M.A.; Weiss, P. The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices. Biomaterials 2008, 29, 533–543. [Google Scholar] [CrossRef]
- Fatimi, A. Chitosan-based embolizing hydrogel for the treatment of endoleaks after endovascular aneurysm repair. Int. J. Polym. Mater. Polym. Biomater. 2019, 68, 107–114. [Google Scholar] [CrossRef]
- Hachimi Alaoui, C.; Réthoré, G.; Weiss, P.; Fatimi, A. Sustainable Biomass Lignin-Based Hydrogels: A Review on Properties, Formulation, and Biomedical Applications. Int. J. Mol. Sci. 2023, 24, 13493. [Google Scholar] [CrossRef]
- Hachimi Alaoui, C.; Rethore, G.; Weiss, P.; Fatimi, A. Naturally derived biopolymers in 3D bioprinting for biomedical applications. In Proceedings of the 1st International Online Conference on Bioengineering (IOCBE 2024), Basel, Switzerland, 16–18 October 2024. [Google Scholar]
- Skardal, A.; Atala, A. Biomaterials for Integration with 3-D Bioprinting. Ann. Biomed. Eng. 2014, 43, 730–746. [Google Scholar] [CrossRef]
- Herrada Manchón, H.; Rodríguez-González, D.; Fernández, M.; Kucko, N.; Groot, F.; Aguilar, E. Effect on Rheological Properties and 3D Printability of Biphasic Calcium Phosphate Microporous Particles in Hydrocolloid-Based Hydrogels. Gels 2022, 8, 28. [Google Scholar] [CrossRef]
- Hölzl, K.; Lin, S.; Tytgat, L.; Van Vlierberghe, S.; Gu, L.; Ovsianikov, A. Bioink properties before, during and after 3D bioprinting. Biofabrication 2016, 8, 032002. [Google Scholar] [CrossRef]
- Guvendiren, M.; Molde, J.; Soares, R.M.D.; Kohn, J. Designing biomaterials for 3D printing. ACS Biomater. Sci. Eng. 2016, 2, 1679–1693. [Google Scholar] [CrossRef]
- Lei, N.; Can, W.; Yaling, D.; Amin, S. Bio-Inspired Hydrogels via 3D Bioprinting. In Biomimetics; Maki, K.H., César, M.-G., Eds.; IntechOpen: Rijeka, Croatia, 2020; Chapter 1. [Google Scholar] [CrossRef]
- Rico-García, D.; Ruiz-Rubio, L.; Pérez-Alvarez, L.; Hernández-Olmos, S.L.; Guerrero-Ramírez, G.L.; Vilas-Vilela, J.L. Lignin-Based Hydrogels: Synthesis and Applications. Polymers 2020, 12, 81. [Google Scholar] [CrossRef]
- Hirose, E.; Kimura, S.; Itoh, T.; Nishikawa, J. Tunic Morphology and Cellulosic Components of Pyrosomas, Doliolids, and Salps (Thaliacea, Urochordata). Biol. Bull. 1999, 196, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Kimura, S.; Ohshima, C.; Hirose, E.; Nishikawa, J.; Itoh, T. Cellulose in the house of the appendicularianOikopleura rufescens. Protoplasma 2001, 216, 71–74. [Google Scholar] [CrossRef]
- Richmond, P.A. Occurence and Functions of Native Cellulose. In Biosynthesis and Biodegradation of Cellulose; Haigler, C.H., Weimer, P.J., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1991; pp. 5–23. [Google Scholar]
- Ciolacu, D.E.; Suflet, D.M. Cellulose-Based Hydrogels for Medical/Pharmaceutical Applications. In Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value; Popa, V., Volf, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 401–439. [Google Scholar] [CrossRef]
- Chen, C.; Xi, Y.; Weng, Y. Recent Advances in Cellulose-Based Hydrogels for Tissue Engineering Applications. Polymers 2022, 14, 3335. [Google Scholar] [CrossRef]
- Lopez Hurtado, P.; Rouilly, A.; Vandenbossche, V.; Raynaud, C. A review on the properties of cellulose fibre insulation. Build. Environ. 2016, 96, 170–177. [Google Scholar] [CrossRef]
- Hopson, C.; Villar-Chavero, M.M.; Domínguez, J.C.; Alonso, M.V.; Oliet, M.; Rodriguez, F. Cellulose ionogels, a perspective of the last decade: A review. Carbohydr. Polym. 2021, 274, 118663. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Cheng, T.; Duan, C.; Zhao, W.; Zhang, W.; Zou, X.; Aspler, J.; Ni, Y. 3D printing using plant-derived cellulose and its derivatives: A review. Carbohydr. Polym. 2019, 203, 71–86. [Google Scholar] [CrossRef]
- Gospodinova, A.; Nankov, V.; Tomov, S.; Redzheb, M.; Petrov, P.D. Extrusion bioprinting of hydroxyethylcellulose-based bioink for cervical tumor model. Carbohydr. Polym. 2021, 260, 117793. [Google Scholar] [CrossRef]
- Lameirinhas, N.S.; Teixeira, M.C.; Carvalho, J.P.F.; Valente, B.F.A.; Pinto, R.J.B.; Oliveira, H.; Luís, J.L.; Pires, L.; Oliveira, J.M.; Vilela, C.; et al. Nanofibrillated cellulose/gellan gum hydrogel-based bioinks for 3D bioprinting of skin cells. Int. J. Biol. Macromol. 2023, 229, 849–860. [Google Scholar] [CrossRef]
- Habib, A.; Sathish, V.; Mallik, S.; Khoda, B. 3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel. Materials 2018, 11, 454. [Google Scholar] [CrossRef]
- Ruocco, N.; Costantini, S.; Guariniello, S.; Costantini, M. Polysaccharides from the Marine Environment with Pharmacological, Cosmeceutical and Nutraceutical Potential. Molecules 2016, 21, 551. [Google Scholar] [CrossRef]
- Pellis, A.; Guebitz, G.M.; Nyanhongo, G.S. Chitosan: Sources, Processing and Modification Techniques. Gels 2022, 8, 393. [Google Scholar] [CrossRef]
- LogithKumar, R.; KeshavNarayan, A.; Dhivya, S.; Chawla, A.; Saravanan, S.; Selvamurugan, N. A review of chitosan and its derivatives in bone tissue engineering. Carbohydr. Polym. 2016, 151, 172–188. [Google Scholar] [CrossRef]
- Kamal, A.; Khalil, E. Assessment of human dental pulp stem cells with chitosan scaffold versus xenografts in implant osseointegration. An experimental study in a rabbit model. Egypt. Dent. J. 2018, 64, 3499–3509. [Google Scholar] [CrossRef]
- Maturavongsadit, P.; Narayanan, L.K.; Chansoria, P.; Shirwaiker, R.; Benhabbour, S.R. Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation. ACS Appl. Bio Mater. 2021, 4, 2342–2353. [Google Scholar] [CrossRef]
- Ramesh, S.; Kovelakuntla, V.; Meyer, A.S.; Rivero, I.V. Three-dimensional printing of stimuli-responsive hydrogel with antibacterial activity. Bioprinting 2021, 24, e00106. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.Y.; Han, H.; Cho, W.-W.; Han, H.; Choi, A.; Hong, H.; Kim, J.Y.; Park, J.H.; Park, S.H.; et al. Improved chondrogenic performance with protective tracheal design of Chitosan membrane surrounding 3D-printed trachea. Sci. Rep. 2021, 11, 9258. [Google Scholar] [CrossRef]
- Hachimi Alaoui, C.; Fatimi, A. A preparation method of softwood lignin derivatives: US9347177B2 patent evaluation. Environ. Sci. Proc. 2022, 22, 20. [Google Scholar] [CrossRef]
- Akhramez, S.; Fatimi, A.; Okoro, O.V.; Hajiabbas, M.; Boussetta, A.; Moubarik, A.; Hafid, A.; Khouili, M.; Simińska-Stanny, J.; Brigode, C.; et al. The circular economy paradigm: Modification of bagasse-derived lignin as a precursor to sustainable hydrogel production. Sustainability 2022, 14, 8791. [Google Scholar] [CrossRef]
- Vásquez-Garay, F.; Carrillo-Varela, I.; Vidal, C.; Reyes-Contreras, P.; Faccini, M.; Teixeira Mendonça, R. A Review on the Lignin Biopolymer and Its Integration in the Elaboration of Sustainable Materials. Sustainability 2021, 13, 2697. [Google Scholar] [CrossRef]
- Jiang, B.; Yao, Y.; Liang, Z.; Gao, J.; Chen, G.; Xia, Q.; Mi, R.; Jiao, M.; Wang, X.; Hu, L. Lignin-Based Direct Ink Printed Structural Scaffolds. Small 2020, 16, 1907212. [Google Scholar] [CrossRef]
- Bonifacio, M.A.; Cometa, S.; Cochis, A.; Scalzone, A.; Gentile, P.; Scalia, A.C.; Rimondini, L.; Mastrorilli, P.; De Giglio, E. A bioprintable gellan gum/lignin hydrogel: A smart and sustainable route for cartilage regeneration. Int. J. Biol. Macromol. 2022, 216, 336–346. [Google Scholar] [CrossRef]
- Domínguez-Robles, J.; Martin, N.K.; Fong, M.L.; Stewart, S.A.; Irwin, N.J.; Rial-Hermida, M.I.; Donnelly, R.F.; Larrañeta, E. Antioxidant PLA Composites Containing Lignin for 3D Printing Applications: A Potential Material for Healthcare Applications. Pharmaceutics 2019, 11, 165. [Google Scholar] [CrossRef]
Property/Application | Cellulose | Chitosan | Lignin |
---|---|---|---|
Source | Most abundant biopolymer; found in plants, animals, and some bacteria | Derived from chitin in crustacean exoskeletons (e.g., shrimp, crab, lobster) | Found in the cell walls of lignocellulosic biomass (plants); alongside cellulose and hemi-cellulose |
Chemical Structure | Linear chains of β(1→4)-linked β-D-anhydroglucpyranose (cellobiose units) | Linear β(1→4)-linked D-glucosamine and N-acetyl-D-glucosamine units | Aromatic polymer composed of p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units |
Crystallinity | Semi-crystalline (amorphous and crystalline regions) | Mostly amorphous | Highly amorphous |
Charge | Neutral | Cationic (positively charged) | Generally neutral to slightly anionic |
Solubility | Insoluble in water and most solvents without modification | Soluble in acidic aqueous solutions | Limited solubility; requires chemical modification or suitable blending |
Key Properties | Mechanical robustness, hydrophilicity, biocompatibility | Biocompatibility, biodegradability, muco-adhesion, antimicrobial, ECM mimicry | Biodegradability, biocompatibility, antioxidant, antimicrobial, UV-blocking |
Modifiability | Chemically modifiable (e.g., esterification, etherification to CMC, HPMC, etc.) | Degree of deacetylation can be tuned; blends well with other materials | Requires chemical modification (e.g., alkali lignin) for better processability |
Typical Bioink Components | HEC, CMC, EC, MC, HPMC; often blended with alginate, gelatin, chitosan | Often blended with HEC, cellulose nanocrystals, polycaprolactone | Often combined with Pluronic F127, gellan gum, PLA |
Biomedical Applications | Hydrogels for tissue scaffolding, bone regeneration, cervical tumor models | Bone and cartilage tissue engineering, tracheal implants, wound healing | Cartilage regeneration, wound dressings, antioxidant delivery |
Printability | Good, especially with derivatives (e.g., HEC shows thixotropic behavior) | Printable when blended; thermosensitive hydrogels and composite scaffolds show good extrusion | Printable when combined with other polymers (e.g., Pluronic F127 or gellan gum) |
Biological Performance | High cell viability (e.g., 86% with CMC after 23 days); supports proliferation | Promotes osteogenesis, ECM formation, and chondrogenesis; good antimicrobial profile | Enhances chondrogenesis, UV protection, water/thermal stability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hachimi Alaoui, C.; Weiss, P.; Fatimi, A.; Réthoré, G. A Brief Overview on Polysaccharide-Based Hydrogels in 3D Bioprinting for Biomedical Applications: Cases of Cellulose, Chitosan, and Lignin. Eng. Proc. 2024, 81, 21. https://doi.org/10.3390/engproc2024081021
Hachimi Alaoui C, Weiss P, Fatimi A, Réthoré G. A Brief Overview on Polysaccharide-Based Hydrogels in 3D Bioprinting for Biomedical Applications: Cases of Cellulose, Chitosan, and Lignin. Engineering Proceedings. 2024; 81(1):21. https://doi.org/10.3390/engproc2024081021
Chicago/Turabian StyleHachimi Alaoui, Chaymaa, Pierre Weiss, Ahmed Fatimi, and Gildas Réthoré. 2024. "A Brief Overview on Polysaccharide-Based Hydrogels in 3D Bioprinting for Biomedical Applications: Cases of Cellulose, Chitosan, and Lignin" Engineering Proceedings 81, no. 1: 21. https://doi.org/10.3390/engproc2024081021
APA StyleHachimi Alaoui, C., Weiss, P., Fatimi, A., & Réthoré, G. (2024). A Brief Overview on Polysaccharide-Based Hydrogels in 3D Bioprinting for Biomedical Applications: Cases of Cellulose, Chitosan, and Lignin. Engineering Proceedings, 81(1), 21. https://doi.org/10.3390/engproc2024081021