Research on Real-Time Mission Planning for Multi-UAV †
Abstract
1. Introduction
2. Mathematical Algorithm Description
2.1. Integer Programming Is Applied to Multi-UAV Target Allocation
2.2. Application of Ant Colony Algorithm and Single UAV Path Planning
3. Data Analysis
3.1. Experimental Hypothesis and Data Description
3.2. Location Distribution Map of Airports and Target Points
3.3. Pre-Task Planning of the Airport
3.4. Real-Time Planning During Flight
3.5. Task Planning Method Combining Random Assignment and Ant Colony Algorithm
4. Result Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lv, Z.; Gao, K. Review of the development of UAV swarm urban combat applications in the USA. J. China Acad. Electron. Inf. Technol. 2020, 15, 738–745. [Google Scholar]
- Maoh, B.; Tian, S.; Chao, A.N. Unmanned Aerial Vehicle Mission Planning. Master’s Thesis, National Defense Industry Press, Beijing, China, 2015; pp. 76–80. (In Chinese). [Google Scholar]
- Ren, X.; Tan, L.; Jiaqi, S.; Lian, X. Multi-target UAV path planning based on improved RRT algorithm. J. Phys. Conf. Ser. 2012, 1786, 012038. [Google Scholar] [CrossRef]
- Zhou, X.; Gao, F.; Fang, X.; Lan, Z. Improved bat algorithm for UAV path planning in three-dimensional Space. IEEE Access 2021, 9, 20100–20116. [Google Scholar] [CrossRef]
- Jayaweera, H.M.; Hanoun, S. A Dynamic Artificial potential Field (D-APF) UAV Path Planning Technique for Following Ground Moving Targets. IEEE Access 2020, 8, 192760–192776. [Google Scholar] [CrossRef]
- Luo, Z.; Zhang, Y.; Mu, L.; Huang, J.; Xin, J.; Liu, H.; Jiao, S.; Xie, G.; Yi, Y. A UAV Path Planning Algorithm Based on an Improved D Lite Algorithm for Forest Firefighting. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 4233–4237. [Google Scholar]
- Xue, Y.; Sun, J.Q. Solving the path planning problem in mobile robotics with the multi-objective evolutionary algorithm. Appl. Sci. 2018, 8, 1425. [Google Scholar] [CrossRef]
- Deng, W.; Xu, J.; Song, Y.; Zhao, H. An effective improved co-evolution ant colony optimization algorithm with multi-strategies and its application. Int. J. Bio-Inspired Comput. 2020, 16, 158–170. [Google Scholar] [CrossRef]
- Dasdemir, E.; Koksalan, M.; Ozturk, D.T. Aflexible reference point-based multi-objective evolutionary algorithm: An application to the UAV route planning problem. Comput. Oper. Res. 2020, 114, 104811. [Google Scholar] [CrossRef]
- Radmanesh, M.; Kumar, M.; Sarim, M. Grey wolf optimization based sense and avoid algorithm in a Bayesian framework for multiple UAV path planning in an uncertain environment. Aerosp. Sci. Technol. 2018, 77. [Google Scholar] [CrossRef]
- D’Urso, F.; Santoro, C.; Santoro, F.F. An integrated framework for the realistic simulation of multi-UAV applications. Comput. Electr. Eng. 2019, 74, 196–209. [Google Scholar] [CrossRef]
- Ning, Q.; Tao, G.P.; Chen, B.C.; Lei, Y.; Yan, H.; Zhao, C. Multi-UAVs trajectory and mission cooperative planning based on the Markov model. Phys. Commun. 2019, 35, 1007–1017. [Google Scholar] [CrossRef]
- Yang, J.; You, X.H.; Wu, G.X.; Hassan, M.M.; Almogren, A.; Guna, J. Application of reinforcement learning in UAV cluster task scheduling. Future Gener. Comput. Syst. 2019, 95, 140–148. [Google Scholar] [CrossRef]
- Liu, C.; Xie, W.-J.; Zhang, P.; Guo, Q. Collaborative Mission Planning of Multi-Target Group Multi-Base and Multi-UAV. J. Proj. Rockiets J. Ammunit. Guid. 2019, 39, 119–124. [Google Scholar]
- Wang, R.-R.; Wei, W.-L.; Yang, M.-C.; Liu, W. Task Allocation of Multiple UAVs Considering Cooperative Route Planning. J. Aeronaut. 2020, 41, 24–35. [Google Scholar]
Target ID | Abscissa | Ordinate | Target ID | Abscissa | Ordinate |
---|---|---|---|---|---|
1 | 1785.48 | 9665.75 | 15 | 4027.18 | 4458.68 |
2 | 3629.09 | 9549.02 | 16 | 658.77 | 6494.20 |
3 | 8929.66 | 9185.48 | 17 | 5301.10 | 946.56 |
4 | 9782.45 | 5680.55 | 18 | 6649.41 | 1451.23 |
5 | 3857.64 | 3574.09 | 19 | 4914.97 | 6473.72 |
6 | 5761.41 | 2586.67 | 20 | 2556.99 | 3120.91 |
7 | 1048.82 | 8514.26 | 21 | 4262.30 | 1952.28 |
8 | 412.59 | 3972.68 | 22 | 6572.66 | 7360.06 |
9 | 3976.31 | 5090.40 | 23 | 9524.98 | 4535.46 |
10 | 1554.78 | 5307.78 | 24 | 4986.33 | 7057.71 |
11 | 5053.35 | 671.40 | 25 | 568.64 | 3653.08 |
12 | 8732.19 | 2586.44 | 26 | 5924.67 | 8670.29 |
13 | 4429.48 | 4299.96 | 27 | 8896.65 | 6894.54 |
14 | 1213.57 | 8877.07 | 28 | 5686.86 | 9740.23 |
Target ID | Abscissa | Ordinate |
---|---|---|
1 | 1785.48 | 9665.75 |
2 | 6572.66 | 7360.06 |
3 | 3857.64 | 3574.09 |
4 | 4914.97 | 6473.72 |
Target ID | Abscissa | Ordinate | Target ID | Abscissa | Ordinate |
---|---|---|---|---|---|
2 | 3629.09 | 9549.02 | 16 | 658.77 | 6494.20 |
3 | 8929.66 | 9185.48 | 17 | 5301.10 | 946.56 |
4 | 9782.45 | 5680.55 | 18 | 6649.41 | 1451.23 |
6 | 5761.41 | 2586.67 | 20 | 2556.99 | 3120.91 |
7 | 1048.82 | 8514.26 | 21 | 4262.30 | 1952.28 |
8 | 412.59 | 3972.68 | 23 | 9524.98 | 4535.46 |
9 | 3976.31 | 5090.40 | 24 | 4986.33 | 7057.71 |
10 | 1554.78 | 5307.78 | 25 | 568.64 | 3653.08 |
11 | 5053.35 | 671.40 | 26 | 5924.67 | 8670.29 |
12 | 8732.19 | 2586.44 | 27 | 8896.65 | 6894.54 |
13 | 4429.48 | 4299.96 | 28 | 5686.86 | 9740.23 |
14 | 1213.57 | 8877.07 | 29 | 5605.34 | 6098.94 |
15 | 4027.18 | 4458.68 | 30 | 9382.69 | 1892.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, J.; Huang, W.; Cui, M. Research on Real-Time Mission Planning for Multi-UAV. Eng. Proc. 2024, 80, 37. https://doi.org/10.3390/engproc2024080037
Bi J, Huang W, Cui M. Research on Real-Time Mission Planning for Multi-UAV. Engineering Proceedings. 2024; 80(1):37. https://doi.org/10.3390/engproc2024080037
Chicago/Turabian StyleBi, Jingzhi, Wei Huang, and Maihui Cui. 2024. "Research on Real-Time Mission Planning for Multi-UAV" Engineering Proceedings 80, no. 1: 37. https://doi.org/10.3390/engproc2024080037
APA StyleBi, J., Huang, W., & Cui, M. (2024). Research on Real-Time Mission Planning for Multi-UAV. Engineering Proceedings, 80(1), 37. https://doi.org/10.3390/engproc2024080037