Seasonal Analysis of Silicon Photovoltaic Technology Module †
Abstract
1. Introduction
2. Methodology
3. Measurement and Experimental Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gray, L.J.; Beer, J.; Geller, M.; Haigh, J.D.; Lockwood, M.; Matthes, K.; Cubasch, U.; Fleitmann, D.; Harrison, G.; Hood, L.; et al. Solar influence on climate. Rev. Geophys. 2010, 48, 1–53. [Google Scholar]
- Kelkar, R.R. Monsoons elsewhere in the world. In Monsoon Monograph; Government of India, Ministry of Earth Sciences, India Meteorological Department, 2012. Available online: https://rrkelkar.files.wordpress.com/2019/02/kelkar-2012.pdf (accessed on 1 January 2024).
- Prasanna, V. Impact of monsoon rain fall on the total food grain yield over India. J. Earth Syst. Sci. 2014, 123, 1129–1145. [Google Scholar]
- Parthasarathy, B.; Munot, A.A.; Kothawale, D.R. All India monthly and seasonal rain fall series:1871–1993. Theor. Appl. Climatol. 1995, 49, 217–224. [Google Scholar] [CrossRef]
- Hirata, Y.; Tani, T. Output variation of photovoltaic modules with environmental factors. Sol. Energy 1995, 55, 463–468. [Google Scholar] [CrossRef]
- Hirata, Y.; Inasaka, T.; Tani, T. Output variation of photovoltaic modules with environmental factors-II seasonal variation. Sol. Energy 1998, 63, 185–189. [Google Scholar] [CrossRef]
- Gottschalg, R.; Betts, T.R.; Infield, D.G.; Keamey, M.J. Experimental study of variations of the solar spectrum of relevance to thin film solar cells. Sol. Energy Mater. Sol. Cell 2003, 79, 527–537. [Google Scholar] [CrossRef]
- Gottschalg, R.; Infield, D.G.; Kearney, M.J. Influence of environmental conditions on outdoor performance of thin film devices. In Proceedings of the 17th European Photovoltaic Solar Energy Conference, Munich, Germany, 1 October 2001; pp. 796–799. [Google Scholar]
- Gottschalg, R.; Cueto, J.D.; Betts, T.R.; Williams, S.R.; Infield, D.G. Investigating the seasonal performance of amorphous silicon single and multi-junction modules. In Proceedings of the 3rd World Conference, Osaka, Japan, 11–18 May 2003; pp. 2078–2081. [Google Scholar]
- Dirnberger, D.; Blackburn, G.; Muller, B.; Reise, C. On the impact of solar spectral irradiance on the yield of different PV technologies. Sol. Energy Mater. Sol. Cells 2015, 132, 431–442. [Google Scholar] [CrossRef]
- Dirnberger, D.; Muller, B.; Reise, C. On the uncertainty of energetic impact on the yield of different PV technologies due to varying spectral irradiance. Sol. Energy 2015, 111, 82–96. [Google Scholar] [CrossRef]
- Nakada, Y.; Fukushige, S.; Minemoto, T.; Takakura, H. Seasonal variation analysis of the outdoor performance of amorphous Si photovoltaic modules using the contour map. Sol. Energy Mater. Sol. Cells 2009, 93, 334–337. [Google Scholar] [CrossRef]
- Minemoto, T.; Nagae, S.; Takakura, H. Impact of spectral irradiance distribution and temperature on the outdoor performance of amorphous Si photovoltaic modules. Sol. Energy Mater. Sol. Cells 2007, 91, 919–923. [Google Scholar]
- Jawaharlal Nehru National Solar Mission. Ministry of New and Renewable Energy Government of India, 2010; pp. 1–15. Available online: http://www.mnre.gov.in/filemanager/UserFiles/mission_document_JNNSM.pdf (accessed on 20 June 2015).
- Magare, D.; Sastry, O.S.; Gupta, R.; Kumar, A.; Sinha, A. Data Logging Strategy of Photovoltaic (PV Module Test Beds. In Proceedings of the 27th European Photovoltaic Solar Energy Conference (EUPVSEC), Frankfurt, Germany, 24–28 September 2012; pp. 3259–3262. [Google Scholar]
- Magare, D.; Sastry, O.; Gupta, R.; Bora, B.; Singh, Y.; Mohammed, H. Wind Effect Modeling and Analysis for Estimation of Photovoltaic Module Temperature. J. Sol. Energy Eng. 2017, 140, 011008. [Google Scholar] [CrossRef]
- Lekouaghet, B.; Boukabou, A.; Boubakir, C. Estimation of the photovoltaic cells/modules parameters using an improved Rao-based chaotic optimization technique. Energy Convers. Manag. 2021, 229, 113722. [Google Scholar] [CrossRef]
- Ortiz-Conde, A.; Trejo, O.; Garcia-Sanchez, F.J. Direct extraction of solar cell model parameters using optimization methods. In Proceedings of the IEEE Latin America Electron Devices Conference (LAEDC), Mexico, 19–21 April 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Kanekar, K.D.; Agrawal, R.; Magare, D. Different Meta-Heuristic Optimization Techniques and Application in Solar Photovoltaic Field: A Renewable Energy Source. In Optimal Planning of Smart Grid with Renewable Energy Resources; IGI Global: Hershey, PA, USA, 2022; pp. 1–37. [Google Scholar]
- Montalvo-Galicia, F.; Sanz-Pascual, M.T.; Rosales-Quintero, P.; Moreno-Moreno, M. Parameter extraction method for the two-diode solar cell model. In Proceedings of the IEEE 65th International Midwest Symposium on Circuits and Systems (MWSCAS), Fukuoka, Japan, 7–10 August 2022; pp. 1–4. [Google Scholar] [CrossRef]
Coefficients | Monsoon | Post Monsoon | Winter | Summer |
---|---|---|---|---|
Power Coefficient (a1) | −0.0076 | −0.2615 | −0.0113 | −0.0053 |
Power Coefficient (a2) | 0.0035 | 0.0013 | 0.04166 | 0.003 |
Irradiance (a3) | 0.024 | 0.0375 | 0.0254 | 0.0309 |
Ambient temperature (a4) | 1.23 | 1.175 | 1.142 | 1.0422 |
Wind Speed(a5) | −1.0327 | −2.4569 | −1.3112 | −1.0113 |
Constant (a6) | −9.8155 | −2.1883 | −1.8169 | −0.5167 |
Seasons | RMSE of Module Temperature | RMSE of Power |
---|---|---|
Monsoon | 3.9026 | 3.6532 |
Post Monsoon | 4.7126 | 3.7391 |
Winter | 4.4333 | 3.8425 |
Summer | 4.9832 | 4.1264 |
Active Module Area, A (m2) | Module Power PSTC (W) | Temperature Coefficient of Power (%/°C) | Power RMSE by Literature Method | Power RMSE by Proposed Method |
---|---|---|---|---|
1.01 | 160 | −0.49 | 4.68 | 3.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanekar, K.; Burade, P.; Magare, D. Seasonal Analysis of Silicon Photovoltaic Technology Module. Eng. Proc. 2023, 59, 184. https://doi.org/10.3390/engproc2023059184
Kanekar K, Burade P, Magare D. Seasonal Analysis of Silicon Photovoltaic Technology Module. Engineering Proceedings. 2023; 59(1):184. https://doi.org/10.3390/engproc2023059184
Chicago/Turabian StyleKanekar, Krupali, Prakash Burade, and Dhiraj Magare. 2023. "Seasonal Analysis of Silicon Photovoltaic Technology Module" Engineering Proceedings 59, no. 1: 184. https://doi.org/10.3390/engproc2023059184
APA StyleKanekar, K., Burade, P., & Magare, D. (2023). Seasonal Analysis of Silicon Photovoltaic Technology Module. Engineering Proceedings, 59(1), 184. https://doi.org/10.3390/engproc2023059184