A CNN–BiLSTM Architecture for Macroeconomic Time Series Forecasting †
Abstract
1. Introduction
2. The Model
3. Empirical Analysis
4. Results
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix
Appendix A.1
consumption | inflation, per capita GDP, corporate taxation, private savings, expen. durable goods, household income, unemployment rate, unempl. over 27 weeks |
investments | consumption, imports, exports, per capita GDP, firms’ profits, expen. durable goods, GDP, house prices, employment rate, unemployment rate, unempl. over 27 weeks |
imports | consumption, exports, inflation, GDP, expen. durable goods, household income, government expenditure, house prices |
exports | consumption, investments, inflation, GDP, expen. durable goods, government expenditure, unemployment rate |
inflation | corporate taxation, private savings, GDP, government expenditure, unempl. over 27 weeks |
wages | per capita GDP, firms’ profits, corporate taxation, household income |
per capita GDP | investments, wages, firms’ profits, corporate taxation, private savings, GDP, household income, employment rate |
firms’ profits | wages, per capita GDP, Private savings, GDP |
corporate taxation | wages, firms’ profits, private savings, unemployment rate |
private savings | wages, per capita GDP, firms’ profits, household income |
expen. durable good | inflation, wages, firms’ profits, private savings, employment rate, unemployment rate, unempl. over 27 weeks |
GDP | consumption, investments, per capita GDP, firms’ profits, expen. durable goods, household income, government expenditure, house prices, unemployment rate |
household income | consumption, imports, inflation, wages, firms’ profits, private savings, expen. durable goods, house prices, employment rate, unemployment rate, unempl. over 27 weeks |
government expenditure | investments, exports, inflation, expen. durable goods, household income, unemployment rate |
house prices | imports, exports, inflation, corporate taxation, expen. durable goods, GDP, government expenditure, employment rate, unemployment rate |
employment rate | consumption, inflation, per capita GDP, GDP, household income, government expenditure |
unemployment rate | consumption, inflation, expen. durable goods, GDP, employment rate |
unempl. over 27 weeks | private savings, imports, exports, GDP, house prices, unemployment rate |
Appendix A.2. Specifications of the ARIMA, ARIMAX, and VAR Models
References
- Fan, J.; Ma, C.; Zhong, Y. A selective overview of deep learning. Stat Sci. 2021, 36, 264–290. [Google Scholar] [CrossRef] [PubMed]
- Mathew, A.; Amudha, P.; Sivakumari, S. Deep Learning Techniques: An Overview. In Advanced Machine Learning Technologies and Applications, Proceedings of the International Conference on Advances in Intelligent Systems and Computing (AMLTA 2020), Jaipur, India, 13–15 February 2020; Hassanien, A., Bhatnagar, R., Darwish, A., Eds.; Springer: Singapore, 2020; Volume 1141, p. 1141. [Google Scholar] [CrossRef]
- Chakraborty, C.; Joseph, A. Machine Learning at Central Banks; Working Paper 674; Bank of England: London, UK, 2017. [Google Scholar]
- Espeholt, L.; Agrawal, S.; Sonderby, C.; Kumar, M.; Heek, J.; Bromberg, C.; Gazen, C.; Carver, R.; Andrychowicz, M.; Hickey, J.; et al. Skillful twelve hour precipitation forecasts using large context neural networks. arXiv 2021, arXiv:2111.07470. [Google Scholar]
- Chen, G.; Liu, S.; Jiang, F. Daily Weather Forecasting Based on Deep Learning Model: A Case Study of Shenzhen City, China. Atmosphere 2022, 13, 1208. [Google Scholar] [CrossRef]
- Corsaro, S.; De Simone, V.; Marino, Z.; Scognamiglio, S. l1-Regularization in portfolio selection with machine learning. Mathematics 2022, 10, 540. [Google Scholar] [CrossRef]
- Asawa, Y.S. Modern Machine Learning Solutions for Portfolio Selection. IEEE Eng. Manag. Rev. 2022, 50, 94–112. [Google Scholar] [CrossRef]
- Kumbure, M.M.; Lohrmann, C.; Luukka, P.; Porras, J. Machine learning techniques and data for stock market forecasting: A literature review. Expert Syst. Appl 2022, 197, 116659. [Google Scholar] [CrossRef]
- Khalid, A.; Huthaifa, K.; Hamzah, A.A.; Anas, R.A.; Laith, A. A New Stock Price Forecasting Method Using Active Deep Learning Approach. J. Open Innov. Technol. Mark. Complex. 2022, 8, 96, ISSN 2199-8531. [Google Scholar] [CrossRef]
- Staffini, A. Stock Price Forecasting by a Deep Convolutional Generative Adversarial Network. Front. Artif. Intell. 2022, 5, 837596. [Google Scholar] [CrossRef]
- Namini, S.S.; Tavakoli, N.; Namin, A.S. A Comparison of ARIMA and LSTM in Forecasting Time Series. In Proceedings of the 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 1394–1401. [Google Scholar] [CrossRef]
- Zulfany, E.R.; Reina, S.; Andy, E. A Comparison: Prediction of Death and Infected COVID-19 Cases in Indonesia Using Time Series Smoothing and LSTM Neural Network. Procedia Comput. Sci. 2021, 179, 982–988, ISSN 1877-0509. [Google Scholar] [CrossRef]
- Jin, X.; Yu, X.; Wang, X.; Bai, Y.; Su, T.; Kong, J. Prediction for Time Series with CNN and LSTM. In Proceedings of the 11th International Conference on Modelling, Identification and Control (ICMIC2019); Lecture Notes in Electrical Engineering; Wang, R., Chen, Z., Zhang, W., Zhu, Q., Eds.; Springer: Singapore, 2020; Volume 582. [Google Scholar] [CrossRef]
- Jama, M. Time Series Modeling and Forecasting of Somaliland Consumer Price Index: A Comparison of ARIMA and Regression with ARIMA Errors. Am. J. Theor. Appl. Stat. 2020, 9, 143–153. [Google Scholar] [CrossRef]
- Hall, A.S. Machine Learning Approaches to Macroeconomic Forecasting. Econ. Rev. Fed. Reserve Bank Kans. City 2018, 103, 63–81. [Google Scholar] [CrossRef]
- Khan, M.A.; Abbas, K.; Su’ud, M.M.; Salameh, A.A.; Alam, M.M.; Aman, N.; Mehreen, M.; Jan, A.; Hashim, N.A.A.B.N.; Aziz, R.C. Application of Machine Learning Algorithms for Sustainable Business Management Based on Macro-Economic Data: Supervised Learning Techniques Approach. Sustainability 2022, 14, 9964. [Google Scholar] [CrossRef]
- Coulombe, P.G.; Leroux, M.; Stevanovic, D.; Surprenant, S. How is machine learning useful for macroeconomic forecasting? J. Appl. Econom. 2022, 37, 920–964. [Google Scholar] [CrossRef]
- Nosratabadi, S.; Mosavi, A.; Duan, P.; Ghamisi, P.; Filip, F.; Band, S.S.; Reuter, U.; Gama, J.; Gandomi, A.H. Data Science in Economics: Comprehensive Review of Advanced Machine Learning and Deep Learning Methods. Mathematics 2020, 8, 1799. [Google Scholar] [CrossRef]
- Yoon, J. Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach. Comput. Econ. 2021, 57, 247–265. [Google Scholar] [CrossRef]
- Vafin, A. Forecasting macroeconomic indicators for seven major economies using the ARIMA model. Sage Sci. Econ. Rev. 2020, 3, 1–16. [Google Scholar] [CrossRef]
- Shijun, C.; Xiaoli, H.; Yunbin, S.; Chong, Y. Application of Improved LSTM Algorithm in Macroeconomic Forecasting. Comput. Intell. Neurosci. 2021, 2021, 4471044. [Google Scholar] [CrossRef]
- Makridakis, S.; Spiliotis, E.; Assimakopoulos, V. Statistical and Machine Learning forecasting methods: Concerns and ways forward. PLoS ONE 2018, 13, e0194889. [Google Scholar] [CrossRef]
- Staffini, A.; Svensson, T.; Chung, U.-I.; Svensson, A.K. Heart Rate Modeling and Prediction Using Autoregressive Models and Deep Learning. Sensors 2021, 22, 34. [Google Scholar] [CrossRef]
- Springenberg, J.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for Simplicity: The All Convolutional Net. arXiv 2015, arXiv:1412.6806. [Google Scholar]
- Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM networks. In Proceedings of the IEEE International Joint Conference on Neural Networks 2005, Montreal, QC, Canada, 31 July–4 August 2005; Volume 4, pp. 2047–2052. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Yuanyuan, C.; Zhang, Y. Adaptive sparse dropout: Learning the certainty and uncertainty in deep neural networks. Neurocomputing 2021, 450, 354–361, ISSN 0925-2312. [Google Scholar] [CrossRef]
- Bikash, S.; Angshuman, P.; Dipti, P.M. Deterministic dropout for deep neural networks using composite random forest. Pattern Recognit. Lett. 2020, 131, 205–212, ISSN 0167-8655. [Google Scholar] [CrossRef]
- Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 1994, 5, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. 2010, 9, 249–256. [Google Scholar]
- Le, Q.; Jaitly, N.; Hinton, G. A Simple Way to Initialize Recurrent Networks of Rectified Linear Units. arXiv 2015, arXiv:1504.00941. [Google Scholar]
- Calin, O. Deep Learning Architectures: A Mathematical Approach; Springer Series in the Data Sciences; Springer International Publishing: New York, NY, USA, 2020; ISBN 978-3-030-36721-3. [Google Scholar]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980v9. [Google Scholar]
- Ruder, S. An Overview of Multi-Task Learning in Deep Neural Networks. arXiv 2017, arXiv:1706.05098. [Google Scholar]
- Ge, R.; Huang, F.; Jin, C.; Yuan, Y. Escaping from Saddle Points---Online Stochastic Gradient for Tensor Decomposition. arXiv 2015, arXiv:1503.02101. [Google Scholar]
- Bengio, Y. Practical recommendations for gradient-based training of deep architectures. In Tricks of the Trade, 2nd ed.; Volume 7700 of Theoretical Computer Science and General Issues; Springer: Berlin/Heidelberg, Germany, 2012; pp. 437–478. [Google Scholar]
- Masters, D.; Luschi, C. Revisiting Small Batch Training for Deep Neural Networks. arXiv 2018, arXiv:1804.07612. [Google Scholar]
- Gholamy, A.; Kreinovich, V.; Kosheleva, O. Why 70/30 or 80/20 Relation Between Training and Testing Sets: A Pedagogical Explanation; University of Texas at El Paso Departmental Technical Reports (CS): El Paso, TX, USA, 2018. [Google Scholar]
- Willmott, C.J.; Matsuura, K. Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance. Clim. Res. 2005, 30, 79. [Google Scholar] [CrossRef]
Variable | ARIMA | Elastic Net | XGBoost | BiLSTM | Our CNN-BiLSTM |
---|---|---|---|---|---|
RMSE MAE | RMSE MAE | RMSE MAE | RMSE (std. dev.) MAE (std. dev.) | RMSE (std. dev.) MAE (std. dev.) | |
consumption | 4.0965 | 2.9343 | 3.0921 | 2.9725 (0.0686) | 1.9736 (0.0463) |
2.8597 | 1.9814 | 2.0763 | 2.0737 (0.0217) | 1.5941 (0.0459) | |
investments | 8.8201 | 6.0735 | 6.1441 | 6.2068 (0.7248) | 3.7446 (0.1710) |
6.0830 | 4.0524 | 3.9671 | 4.1441 (0.4170) | 2.9190 (0.1372) | |
imports | 11.088 | 8.3575 | 7.7900 | 7.8201 (0.4894) | 4.3390 (0.1758) |
7.1216 | 6.1214 | 5.2379 | 5.1850 (0.4264) | 3.3621 (0.1416) | |
exports | 10.599 | 7.1607 | 7.2648 | 7.1996 (0.2561) | 5.1139 (0.1191) |
6.6301 | 5.0656 | 4.9356 | 4.6305 (0.4166) | 3.3972 (0.0941) | |
inflation | 2.2526 | 1.5051 | 1.5849 | 1.5760 (0.0418) | 0.8927 (0.0305) |
1.4850 | 0.9833 | 0.9830 | 1.0704 (0.0357) | 0.6801 (0.0404) | |
wages | 206.60 | 148.31 | 166.21 | 164.75 (8.7017) | 141.20 (2.4414) |
143.02 | 101.07 | 127.92 | 130.71 (13.638) | 95.986 (3.4415) | |
per capita GDP | 145.61 | 102.61 | 114.19 | 148.54 (9.9937) | 86.209 (2.9799) |
107.06 | 76.707 | 87.994 | 125.79 (11.249) | 68.618 (3.3470) | |
firms’ profits | 39.849 | 28.078 | 29.166 | 29.548 (1.0818) | 23.911 (0.9131) |
28.648 | 19.137 | 19.690 | 19.660 (0.7318) | 18.481 (0.5890) | |
corporate taxation | 4.0462 | 3.2166 | 3.7096 | 4.5836 (0.6401) | 3.0049 (0.0761) |
3.1330 | 2.4978 | 2.9433 | 3.6909 (0.2091) | 2.3460 (0.0533) | |
private savings | 47.670 | 37.938 | 38.543 | 39.569 (1.5244) | 36.840 (03155) |
35.448 | 27.982 | 28.764 | 29.538 (1.2444) | 27.392 (0.3602) | |
expen. durable goods | 8.5890 | 6.0217 | 6.3203 | 6.5361 (0.1523) | 4.2486 (0.0985) |
5.9085 | 3.8684 | 4.2891 | 4.4667 (0.1151) | 3.2753 (0.0737) | |
GDP | 2.9405 | 2.2276 | 2.2654 | 2.1998 (0.1925) | 1.3007 (0.0669) |
2.0696 | 1.6256 | 1.5530 | 1.4258 (0.0305) | 0.9965 (0.0445) | |
household income | 4.4913 | 3.0415 | 3.3690 | 3.0825 (0.0092) | 2.9496 (0.0172) |
2.9752 | 2.0485 | 2.1789 | 1.9547 (0.0143) | 1.8623 (0.0161) | |
government expenditure | 2.4130 | 2.4078 | 2.6883 | 2.4379 (0.0322) | 1.9379 (0.0894) |
1.9668 | 1.8971 | 2.0271 | 2.0667 (0.0413) | 1.5853 (0.0892) | |
house prices | 5.5399 | 2.8767 | 3.4029 | 3.6669 (0.1034) | 2.3246 (0.0597) |
4.2488 | 1.9062 | 2.1275 | 2.5121 (0.1170) | 1.8021 (0.0506) | |
employment rate | 0.9396 | 0.4462 | 0.6097 | 1.0915 (0.1840) | 0.8562 (0.0315) |
0.5943 | 0.2688 | 0.3803 | 0.6800 (0.2310) | 0.7342 (0.0032) | |
unemployment rate | 1.2203 | 0.5638 | 0.7087 | 0.6782 (0.0911) | 0.4307 (0.0561) |
0.8644 | 0.4000 | 0.4847 | 0.4163 (0.0714) | 0.3565 (0.0417) | |
unemp. over 27 weeks | 5.8469 | 3.9508 | 11.856 | 5.4433 (0.8422) | 1.9146 (0.1641) |
3.8736 | 2.9983 | 8.7233 | 4.0504 (0.6085) | 1.4947 (0.1287) |
Variable | ARIMA | Elastic Net | XGBoost | BiLSTM | Our CNN-BiLSTM |
---|---|---|---|---|---|
RMSE MAE | RMSE MAE | RMSE MAE | RMSE (std. dev.) MAE (std. dev.) | RMSE (std. dev.) MAE (std. dev.) | |
consumption | 0.9643 | 0.9553 | 1.3197 | 0.9081 (0.0280) | 0.8653 (0.0238) |
0.7120 | 0.6583 | 0.9289 | 0.6078 (0.0211) | 0.5385 (0.0168) | |
investments | 1.4326 | 1.4369 | 2.3368 | 1.4349 (0.0392) | 1.3400 (0.0365) |
0.9711 | 0.9419 | 1.4167 | 0.9849 (0.0383) | 0.9246 (0.0147) | |
imports | 1.7607 | 2.3095 | 2.5519 | 1.7439 (0.1267) | 1.5588 (0.0478) |
1.1129 | 1.6583 | 1.7599 | 1.1268 (0.0544) | 1.0276 (0.0273) | |
exports | 2.283 | 2.2169 | 2.7194 | 2.3930 (0.1076) | 2.0841 (0.0452) |
1.6165 | 1.5940 | 2.0555 | 1.5815 (0.0847) | 1.3116 (0.0749) | |
inflation | 0.4846 | 0.9553 | 0.6456 | 0.6115 (0.0376) | 0.5554 (0.0149) |
0.2919 | 0.6593 | 0.4136 | 0.3695 (0.0223) | 0.3225 (0.0204) | |
wages | 117.50 | 98.920 | 127.54 | 126.99 (4.5553) | 121.86 (1.1490) |
50.580 | 44.557 | 78.866 | 81.072 (9.1984) | 71.469 (2.7451) | |
per capita GDP | 65.879 | 65.311 | 78.466 | 80.204 (5.5873) | 64.167 (0.4711) |
37.380 | 32.470 | 46.829 | 56.759 (6.7406) | 40.493 (1.7013) | |
firms’ profits | 20.872 | 19.399 | 23.328 | 20.771 (1.5599) | 17.165 (0.0945) |
10.754 | 9.1343 | 13.805 | 12.611 (0.8903) | 9.4561 (0.1147) | |
corporate taxation | 2.2362 | 2.2831 | 2.3848 | 2.5278 (0.1010) | 2.0766 (0.0557) |
1.3484 | 1.2905 | 1.4029 | 1.7611 (0.1016) | 1.1868 (0.0732) | |
private savings | 26.963 | 28.001 | 34.706 | 31.628 (2.3708) | 25.765 (0.3857) |
18.998 | 20.012 | 23.230 | 21.659 (1.8836) | 15.805 (08.280) | |
expen. durable goods | 2.1026 | 2.0493 | 3.2429 | 1.9780 (0.1184) | 1.7694 (0.0524) |
1.3557 | 1.4233 | 2.1295 | 1.4542 (0.0796) | 1.2527 (0.0757) | |
GDP | 0.6006 | 0.6097 | 0.7673 | 0.5439 (0.0094) | 0.5086 (0.0291) |
0.4002 | 0.3924 | 0.5539 | 0.3475 (0.0222) | 0.3165 (0.0240) | |
household income | 0.9904 | 1.1643 | 1.7724 | 1.1304 (0.0906) | 0.8914 (0.0281) |
0.5434 | 0.6927 | 0.9226 | 0.6783 (0.0442) | 0.6085 (0.0277) | |
government expenditure | 0.5634 | 0.6093 | 0.7855 | 0.5975 (0.0394) | 0.5191 (0.0098) |
0.4001 | 0.4405 | 0.6336 | 0.4525 (0.0304) | 0.3923 (0.0062) | |
house prices | 0.7943 | 0.7671 | 1.2116 | 0.9762 (0.0797) | 0.8293 (0.0291) |
0.5159 | 0.4363 | 0.7466 | 0.6241 (0.0592) | 0.5085 (0.0313) | |
employment rate | 0.1316 | 0.1373 | 0.2263 | 0.3539 (0.0297) | 0.3716 (0.0058) |
0.1029 | 0.1059 | 0.1703 | 0.2360 (0.0404) | 0.2422 (0.0141) | |
unemployment rate | 0.1547 | 0.1592 | 0.2037 | 0.1552 (0.0022) | 0.1569 (0.0007) |
0.1238 | 0.1279 | 0.1526 | 0.1230 (0.0027) | 0.1247 (0.0011) | |
unemp. over 27 weeks | 1.2845 | 1.2896 | 9.7659 | 1.3294 (0.0988) | 1.5099 (0.0656) |
0.9715 | 0.9756 | 6.6189 | 1.0333 (0.0757) | 1.1661 (0.0587) |
Variable | ARIMAX | VAR | Elastic Net | XGBoost | BiLSTM | Our CNN-BiLSTM |
---|---|---|---|---|---|---|
RMSE MAE | RMSE MAE | RMSE MAE | RMSE MAE | RMSE (std. dev.) MAE (std. dev.) | RMSE (std. dev.) MAE (std. dev.) | |
consumption | 4.0460 | 4.1935 | 3.6708 | 3.4773 | 3.4177 (0.1048) | 3.2332 (0.0232) |
2.7761 | 3.0393 | 2.6287 | 2.3817 | 2.5099 (0.0734) | 2.2925 (0.0376) | |
investments | 8.3121 | 11.113 | 6.9493 | 6.4072 | 6.2005 (0.3294) | 5.6495 (0.0631) |
5.4483 | 8.8338 | 4.5236 | 4.2031 | 4.2836 (0.2893) | 3.8215 (0.1032) | |
imports | 9.5076 | 8.7729 | 7.6435 | 7.8722 | 6.9976 (0.1286) | 6.5982 (0.0757) |
7.1720 | 6.8316 | 5.4115 | 5.5894 | 4.3225 (0.1295) | 4.0813 (0.0615) | |
exports | 8.6620 | 8.7729 | 7.6435 | 7.3792 | 7.3524 (0.1209) | 6.9591 (0.1499) |
6.4796 | 6.8316 | 5.4115 | 5.3136 | 5.2083 (0.2321) | 4.7479 (0.1894) | |
inflation | 1.9595 | 1.7622 | 1.6580 | 1.5018 | 1.5093 (0.0164) | 1.5165 (0.0353) |
1.5155 | 1.1454 | 1.2344 | 0.9855 | 1.0497 (0.0339) | 1.0930 (0.0473) | |
wages | 173.51 | 164.74 | 142.60 | 147.79 | 154.29 (7.3877) | 141.65 (0.4800) |
135.74 | 123.20 | 94.343 | 99.890 | 108.36 (11.398) | 91.314 (1.1180) | |
per capita GDP | 131.39 | 127.81 | 108.66 | 109.46 | 104.87 (2.6097) | 97.836 (0.5310) |
103.27 | 99.720 | 80.566 | 84.470 | 79.508 (2.7268) | 72.670 (0.4794) | |
firms’ profits | 29.515 | 29.606 | 29.169 | 28.808 | 28.881 (0.1190) | 28.029 (0.0803) |
20.162 | 20.127 | 20.061 | 19.758 | 19.517 (0.1231) | 18.927 (0.1183) | |
corporate taxation | 4.1696 | 3.9330 | 3.0939 | 3.5095 | 3.2635 (0.0528) | 2.9983 (0.0300) |
3.0078 | 2.8608 | 2.3600 | 2.7044 | 2.5187 (0.0696) | 2.2922 (0.0125) | |
private savings | 39.156 | 40.942 | 37.644 | 37.657 | 36.509 (0.3576) | 35.862 (0.2169) |
29.315 | 30.340 | 27.215 | 27.197 | 26.957 (0.1213) | 26.416 (0.0249) | |
expen. durable goods | 7.5644 | 6.9866 | 6.7296 | 6.6235 | 6.7366 (0.1282) | 6.3273 (0.1463) |
5.0644 | 5.3048 | 4.3630 | 4.4179 | 4.7585 (0.2162) | 4.2023 (0.0660) | |
GDP | 3.2227 | 3.3951 | 2.5851 | 2.3209 | 2.2353 (0.1251) | 2.0479 (0.0587) |
2.4332 | 2.3968 | 1.8965 | 1.6542 | 1.6550 (0.2241) | 1.3924 (0.0620) | |
household income | 3.5447 | 3.0540 | 3.1000 | 3.4116 | 3.0019 (0.0269) | 2.8639 (0.1174) |
2.5716 | 2.0809 | 2.1340 | 2.1781 | 2.0218 (0.0438) | 1.9530 (0.0519) | |
government expen. | 3.5540 | 4.8023 | 2.0151 | 2.3825 | 2.3299 (0.0241) | 1.5517 (0.0455) |
2.7296 | 3.4904 | 1.5048 | 1.8464 | 1.8869 (0.0480) | 1.2469 (0.0295) | |
house prices | 4.1156 | 5.2339 | 3.4730 | 3.4337 | 3.6274 (0.0694) | 3.2234 (0.0437) |
2.7895 | 4.0954 | 2.5971 | 2.4875 | 2.7029 (0.3359) | 2.3406 (0.0359) | |
employment rate | 2.0070 | 4.2618 | 0.4970 | 0.5008 | 0.5733 (0.1733) | 0.3754 (0.0168) |
1.5946 | 3.9164 | 0.3281 | 0.3830 | 0.4789 (0.1207) | 0.2988 (0.0182) | |
unemployment rate | 2.0894 | 2.3794 | 0.5858 | 0.5554 | 0.6595 (0.0508) | 0.4636 (0.0306) |
1.6533 | 1.7583 | 0.4443 | 0.4153 | 0.4667 (0.0342) | 0.3147 (0.0314) | |
unemp. over 27 w. | 17.772 | 17.696 | 2.9366 | 9.5743 | 3.7248 (0.6547) | 2.8321 (0.0330) |
15.120 | 17.218 | 2.2811 | 6.9341 | 3.1515 (0.5486) | 2.2403 (0.0075) |
Variable | ARIMAX | VAR | Elastic Net | XGBoost | BiLSTM | Our CNN-BiLSTM |
---|---|---|---|---|---|---|
RMSE MAE | RMSE MAE | RMSE MAE | RMSE MAE | RMSE (std. dev.) MAE (std. dev.) | RMSE (std. dev.) MAE (std. dev.) | |
consumption | 1.7566 | 2.9969 | 1.1707 | 1.6084 | 1.9307 (0.1019) | 2.1592 (0.1323) |
1.2117 | 2.4505 | 0.8992 | 1.2032 | 1.4358 (0.1144) | 1.6629 (0.1393) | |
investments | 5.3641 | 10.213 | 2.7433 | 2.8168 | 2.5233 (0.1986) | 2.2397 (0.2277) |
3.6766 | 9.2144 | 2.2516 | 1.8298 | 1.8002 (0.1657) | 1.6682 (0.1700) | |
imports | 5.3600 | 6.0002 | 2.8470 | 3.4139 | 3.2036 (0.2811) | 2.3958 (0.0599) |
4.3036 | 4.7285 | 2.1585 | 2.0686 | 2.4632 (0.1612) | 1.7573 (0.0653) | |
exports | 7.5044 | 7.2302 | 3.9126 | 3.9077 | 4.4484 (0.3598) | 3.6799 (0.1089) |
5.1107 | 5.4215 | 2.8886 | 2.7276 | 3.0564 (0.1857) | 2.7379 (0.1062) | |
inflation | 2.4004 | 5.8533 | 0.6923 | 0.7326 | 1.3577 (0.1675) | 1.1152 (0.2807) |
1.9318 | 4.6454 | 0.4677 | 0.4734 | 1.0098 (0.1148) | 0.8316 (0.2151) | |
wages | 144.23 | 138.73 | 117.72 | 124.43 | 118.26 (2.1950) | 114.22 (2.0562) |
107.37 | 92.062 | 68.958 | 75.590 | 68.691 (2.4276) | 63.500 (1.9796) | |
per capita GDP | 87.899 | 78.678 | 64.985 | 83.200 | 71.752 (2.4801) | 61.601 (1.3644) |
62.521 | 59.400 | 45.917 | 54.800 | 49.911 (0.9571) | 42.292 (2.1096) | |
firms’ profits | 23.038 | 24.186 | 22.729 | 28.622 | 21.102 (0.6201) | 18.358 (0.3645) |
16.984 | 17.132 | 12.229 | 18.731 | 13.122 (0.3800) | 11.501 (0.6107) | |
corporate taxation | 3.5300 | 3.2948 | 2.3399 | 2.5744 | 2.4300 (0.1239) | 2.2880 (0.0093) |
2.6559 | 2.6556 | 1.5964 | 1.5975 | 1.6751 (0.0506) | 1.5749 (0.0094) | |
private savings | 29.915 | 32.496 | 28.248 | 37.090 | 33.859 (1.1122) | 25.749 (0.4926) |
21.136 | 22.814 | 16.479 | 23.940 | 22.989 (1.0929) | 15.895 (0.2147) | |
expen. durable goods | 7.6315 | 15.597 | 5.2789 | 5.0983 | 7.0292 (0.3995) | 4.2094 (0.1529) |
4.9930 | 12.497 | 3.4234 | 3.2737 | 5.0255 (0.7138) | 3.1987 (0.1189) | |
GDP | 1.3641 | 2.2758 | 0.9309 | 0.9349 | 1.1034 (0.0647) | 0.8727 (0.0372) |
0.9897 | 1.9223 | 0.7082 | 0.7232 | 0.7880 (0.0315) | 0.6515 (0.0343) | |
household income | 3.1828 | 7.3236 | 2.1474 | 1.9454 | 2.2263 (0.1348) | 2.2520 (0.1713) |
2.2418 | 5.7770 | 1.4936 | 1.0294 | 1.5581 (0.1717) | 1.6404 (0.1257) | |
government expen. | 3.8283 | 2.8563 | 1.2604 | 1.0056 | 1.1806 (0.1617) | 1.0664 (0.0420) |
3.1686 | 2.2076 | 1.0073 | 0.8085 | 0.8747 (0.1080) | 0.8037 (0.0320) | |
house prices | 4.0064 | 3.2791 | 0.7930 | 1.3561 | 1.3317 (0.1338) | 1.2537 (0.0430) |
2.7954 | 2.7633 | 0.6006 | 0.9131 | 1.0029 (0.1015) | 0.9268 (0.0668) | |
employment rate | 2.0802 | 0.6177 | 0.1319 | 0.2055 | 0.2540 (0.0274) | 0.2182 (0.0099) |
1.6528 | 0.4981 | 0.1027 | 0.1618 | 0.1981 (0.0160) | 0.1700 (0.0067) | |
unemployment rate | 1.8229 | 2.2742 | 0.1414 | 0.3147 | 0.2357 (0.0259) | 0.2013 (0.0022) |
1.3537 | 1.8059 | 0.1287 | 0.2085 | 0.1915 (0.0240) | 0.1566 (0.0021) | |
unemp. over 27 w. | 19.020 | 12.429 | 1.1769 | 10.796 | 1.9132 (0.2058) | 1.7467 (0.0925) |
16.049 | 11.726 | 0.9036 | 7.5981 | 1.4810 (0.2187) | 1.3394 (0.0701) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staffini, A. A CNN–BiLSTM Architecture for Macroeconomic Time Series Forecasting. Eng. Proc. 2023, 39, 33. https://doi.org/10.3390/engproc2023039033
Staffini A. A CNN–BiLSTM Architecture for Macroeconomic Time Series Forecasting. Engineering Proceedings. 2023; 39(1):33. https://doi.org/10.3390/engproc2023039033
Chicago/Turabian StyleStaffini, Alessio. 2023. "A CNN–BiLSTM Architecture for Macroeconomic Time Series Forecasting" Engineering Proceedings 39, no. 1: 33. https://doi.org/10.3390/engproc2023039033
APA StyleStaffini, A. (2023). A CNN–BiLSTM Architecture for Macroeconomic Time Series Forecasting. Engineering Proceedings, 39(1), 33. https://doi.org/10.3390/engproc2023039033