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Abstract: In forecasting socio-economic processes, it is essential to have tools that are highly perform-
ing, with results as close to reality as possible. Forecasting plays an important role in shaping the
decisions of governments and central banks about macroeconomic planning, and it is an essential
analytical tool in defining economic strategies of countries. The most common forecasting methods
used in the analysis of macroeconomic processes are based on extrapolation, i.e., extending the
trend observed in the past (and present) to the future. However, the presence of non-linearity in
the socio-economic systems under uncertainty, as well as the partial observability of the processes,
has contributed to make researchers and practitioners consider other methodologies, too. In this
paper, we analyze 18 time series of macroeconomic variables of the United States of America. We
compare the benchmark results obtained with “classic” forecasting techniques with those obtained
with our proposed architecture. The model we construct can be defined as “hybrid” since it combines
a Convolutional Neural Network (CNN) with a Bidirectional Long Short-Term Memory Network
(BiLSTM) backend. We show that, for what concerns minimizing the forecast error, our model
competes with and often improves the results obtained with the benchmark techniques. The goal of
this work is to highlight that, due to the recent advances in computing power, new techniques can be
added to the set of tools available to a policymaker for forecasting macroeconomic data.

Keywords: time series forecasting; economic forecasting; macroeconometric forecasting; deep
learning; CNN-BiLSTM

1. Introduction

Machine Learning is now deeply entwined with many aspects of modern society,
from optimizing web searches and filtering content on social networks to personalized
recommendations on e-commerce sites. Increasingly, these applications make use of a class
of techniques called Deep Learning, which forms a subfield of Machine Learning. Deep
Learning techniques are based on Artificial Neural Networks (ANNs), which are vaguely
inspired by the structure and functioning of the brain. ANNs are made by artificial neurons,
and these neurons are organized in many different layers: a given layer computes the
values to be used as input for the next layer in order to process the data in an increasingly
complex and complete way.

With a sufficient amount of data, such networks are able to learn the correct repre-
sentation and to outperform Machine Learning algorithms [1,2]; in other words, Deep
Learning can be thought of as a learning technique in which ANNs are exposed to very
huge amounts of data so that they can efficiently learn to perform tasks [3].

Deep Learning is one of the main sources of success for the recent advances in Artificial
Intelligence: because of ANNs and their variations, which can efficiently analyze images,
video, audio and sequential data, this area is developing rapidly.

For some years now, researchers have been trying to apply Deep Learning for forecast-
ing analysis on time series data. Excellent results have been achieved in some fields (among
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all, that of weather forecasts [4,5]), but in the economic–financial field, the use of these new
tools has not yet matured except for some applications in portfolio selection [6,7] and in
stock price forecasting [8–10]. Even so, Machine Learning techniques and Deep Learning
algorithms have shed light on new approaches to dealing with prediction problems, in
which the relationships between input and output variables are modeled in a deep and
layered hierarchy. Machine Learning techniques such as Support Vector Machines (SVMs)
and Random Forests, as well as Deep Learning techniques such as Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNs) and Long Short-Term Memory
(LSTMs) have gained a lot of attention recently, and they are increasingly being applied in
many disciplines [11–13]. Unlike simpler classification and regression problems, time series
forecasting adds a further order of complexity, caused by the time dependence between
observations. Traditionally, time series forecasting has been dominated by linear methods,
such as ARIMA, because they have a good theoretical framework and are effective on many
problems [11,14]. However, these methods also suffer from some limitations, such as being
sensible to the presence of missing data, excluding complex non-linear mappings between
inputs and outputs, and requiring a careful data preparation to find the optimal number
of delays.

Forecasting time series data in the macroeconomic domain is an even more challenging
task, mainly due to the possible unprecedent changes in economic trends on the one hand,
and incomplete information on the other [15–17]. The market volatility in recent years has
created serious concerns over the precision of economic and financial forecasts; therefore,
the accuracy of the predictions is an extremely important parameter to consider when
selecting a forecasting method [18,19].

One of the goals of this paper is to study which techniques offer the best forecasts,
starting from a dataset of US macroeconomic data. In this regard, we first employed
three econometric models (ARIMA, ARIMAX, and VAR), as well as Machine Learning
models (Elastic Net, XGBoost, and BiLSTM), to measure their prediction accuracy on the
examined variables. We have chosen to use these models because they are the most popular
forecasting tools in the econometric field [20,21] or because they have been deemed as
optimal for forecasting certain macroeconomic variables [15] and because, in a comparison
with other techniques (naive forecasting, exponential smoothing, etc.) they demonstrated
better performances. Next, we measured the prediction accuracy reported by our Deep
Learning architecture.

Deep Learning methods add non-linearity and complexity in time series forecasting,
and therefore they can provide good performance [3]. Furthermore, neural networks
should be able to exploit all the capabilities of classical linear prediction methods, since
they basically try to find the best mapping from inputs to outputs [2]. However, when it
comes to time series forecasting, ANNs and complex methods should be evaluated and
applied carefully, as depending on the data at hand they do not always deliver better results
than more traditional tools [22,23]. It is therefore important to include and evaluate the
performance of multiple methods to justify the application of neural networks.

CNNs are feedforward neural networks with shared weights and sparse interactions,
often used for processing data that has a known grid-like topology (such as images or time
series data). In CNN architectures, it is custom to process the data with a certain number of
convolutional layers, followed by a max-pooling layer. Informally, the convolutional layers
filter the data by removing noise and extracting features of the input, while the max-pooling
layer acts as an information contractor, keeping only a summary of those filtered features.
RNNs are a family of neural networks obtained by adding feedback connections to the
feedforward architecture, and they are again used mainly for processing sequential data
(such as text and time series data); LSTMs are a particular kind of them, which introduced
the idea of gates to better control the flow of information and learn long-term dependencies.

The main goal of this paper is to show that, due to the recent advances in comput-
ing power, there are additional methods of analysis that are available to policymakers,
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especially when they are planning some interventions based on the forecasts of economic
variables. We suggest that these methods should be taken into consideration.

2. The Model

Our proposed architecture is a hybrid CNN-BiLSTM. First, we stacked two one-
dimensional convolutional layers (64 filters each, with a filter size of 3) to filter the input
signal. The results of these convolutions were then passed to a one-dimensional MaxPooling
layer (pooling size of 2, no strides and “valid” padding), in order to down-sample the
feature maps, reduce the dimensionality, extract only the relevant information and in
general make the network more robust. Notice that we only halved the dimensionality,
applying a modest pooling size of 2. Applying a pooling layer after (usually two or more)
convolutional layers in order to filter the relevant information while also making the
network easier to train is a standard procedure in CNNs, even though recently (see, for
example, [24]) some researchers proposed efficient architectures made only of convolutional
layers that often reached state-of-the-art performance in a series of object recognition tasks.
We then flattened the down-sampled results into a vector of neurons, and we provided it
as a sequence to three-layer stacked Bidirectional LSTMs (BiLSTMs), each one, respectively,
with 200, 100 and 50 units. A BiLSTM cell [25] can be simply thought of as made of two
LSTMs: one reading the input sequence forward and the other reading it backwards, before
concatenating both interpretations. Doing so increases the amount of information available
to the model because it provides more context and, while so far it has been typically applied
for Natural Language Processing tasks, it recently proved to be very useful also for time
series forecasting [13].

Finally, the output of the BiLSTM submodel is followed by a fully connected (FC) layer
of 25 neurons to interpret its outcomes. We then stacked the output layer, which was again
a fully connected one, this time made by 12 neurons (when we wanted to forecast the next
12 months) or just a single neuron (when we performed single-step forecasting).

When training complex Deep Learning models, overfitting the train set is a very
common phenomenon. To deal with this problem and provide a good generalization, we
applied extensive dropout. Dropout [26] is an algorithm for which, at every training step,
each neuron in the considered layer has a certain defined probability p of being “dropped”.
Dropout offers regularization because it approximates training in parallel many neural
networks with different architectures: since at each training step a neuron can be active or
not, we are effectively training 2N different networks (where N represents the number of
neurons to which dropout is applied). It is also a very suitable technique when we do not
have a high amount of training data [27,28].

We applied dropout after the CNN submodel, after each BiLSTM layer, and after the
FC layer (before the output layer), for a total of five dropout layers. We applied stronger
dropout (p = 0.5) after each BiLSTM layer, while after the CNN submodel and the FC layer
we applied a milder one (p = 0.1).

As highlighted by [26], dropout works even better when combined with other regular-
ization techniques, such as weight and bias constraints. Large weight size can lead to the
problem of exploding gradients [29] which in turn makes the network unstable. To deal
with this problem, we can force the norm of all the weights in a layer to be below a certain
threshold c. Following again [26], we combined dropout with max-norm regularization,
bounding both the weights and the biases of each hidden layer to have their norms be
below three.

The activation function of a neuron/node is used to map the weighted sum of the
inputs to the output. For the entire network, we applied a ReLU (Rectified Linear Unit)
activation function, which is a piecewise linear function that outputs the summed weighted
input if positive, otherwise it outputs zero:

ReLU(x) = max(0, x). (1)
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Non-linearity is needed in activation functions to learn complex enough (non-linear)
mappings from the inputs to the output. ReLU and its variants have become the standard
choice as activation functions for training deep neural networks because of their many
desirable properties, one among which is the fact that they deal well with the problem of
vanishing gradients [30]. Traditionally, for the LSTM cells, the hyperbolic tangent (tanh)
function is used as activation. However, empirically, we found that passing the BiLSTM
output as argument to a ReLU function performed slightly better, which is in line with
other results in the literature [31]. We initialized the weights of each layer applying the
Glorot uniform initializer [30], which in practice works well for deep networks [32].

Another important choice is the optimization algorithm. We selected Adam [33]
because it combines both the ideas of momentum estimation and RMSProp, and it is fast
and efficient. It is typically the default choice [34], and indeed in our experiments we found
it to perform the best.

Finally, we trained our network using mini-batch gradient descent, which works as
a compromise between gradient descent and stochastic gradient descent (SGD). Using
mini-batches, we obtained a more stable convergence than using SGD while still injecting
enough noise in the model, which is required for non-convex optimization [35]. We chose
mini-batches of size m = 32, which usually works well in practice [36,37].

Figure 1 shows a stylized picture of our architecture.
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Figure 1. The network structure of our CNN-BiLSTM architecture.

Consider a normalized time series Xn, where n denotes the number of input variables
(n = 1 for the univariate case) and y ∈ Xn represents our variable of interest. After
reframing the data as a supervised learning problem (where a given segment of Xn is
used to forecast the next t steps of y—which we denote here as yt), our described model
first processes Xn by extracting different features with different filters, down-sampling
the resulting feature maps via MaxPooling. The resulting outcome F is then flattened and
provided as input to the BiLSTM backend, which further processes the data and makes the
final prediction, ŷt. In short,

F = CNN(Xn), (2)

ŷt = BiLSTM(F). (3)
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3. Empirical Analysis

We conducted our empirical analysis using data collected by the Bureau of Economic
Analysis (BEA) and the Bureau of Labor Statistics (BLS) on different economic indicators of
the United States of America. Among the many variables collected by the two agencies,
we chose those that presented a low correlation (see Figure 2) in order to capture different
aspects of the economy as a whole. The 18 chosen variables have already been seasonally
adjusted, and they range from June 1947 to December 2019. They were measured monthly
(we linearly interpolated those that were recorded on a quarterly basis).
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The collected variables are consumption of goods, expenditure on durable goods, pri-
vate investments, import, export, inflation, GDP, available household income, government
expenditure, house prices, employment rate, and unemployment rate (all expressed as
growth rate over the same period of the previous year); average wages, Per Capita GDP
(in dollars); corporate profits, corporate taxation, private savings (in billions of dollars);
long-term unemployment (as a percentage of total unemployment).

Each variable is numerical, and we had no missing values in the original dataset. We
had a total of 871 observations for each variable. We split each time series into a train set
and a test set, using an 80–20 split ratio (i.e., the first 697 values were used for training our
models while the last 174 values were used to evaluate their performance). The reason
behind this split is because it is one of the of the most common ones and has been shown to
work well in practice [38]. We ran both multi-step forecasting (where the models tried to
forecast at once the next 12 values) and one-step forecasting (where the models iteratively
forecasted the next time step).

We first implemented three “classic” econometric models to perform forecasting on the
test set: an ARIMA model, an ARIMAX model, and a VAR model. We also considered three
Machine Learning models: a regularized linear regression model (Elastic Net), a gradient
boosting algorithm (XGBoost), and a baseline Deep Learning architecture (BiLSTM). The
forecast errors obtained from these models were the benchmark results to which to compare
our proposed architecture.

First, we needed to verify that the considered processes were stationary. We applied the
Augmented Dickey Fuller (ADF) test to check for the existence of unit roots. For only 5 of
the 18 variables (average wages, Per Capita GDP, corporate profits, corporate taxation, and
private savings) we did not reject the null hypothesis of having a unit root at a significance
level of 0.01. We set for these variables the differencing term to d = 1 in the ARIMA and
ARIMAX models, and a further test on the differentiated data of these variables confirmed
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the absence of unit roots. In addition, the autocorrelation function (ACF) and the partial
autocorrelation function (PACF) of these five variables further suggested the idea that d = 1.
We employed ACF and PACF also for finding the appropriate order of the autoregressive
term p and the moving average term q. We further compared the model specification
suggested by ACF and PACF with the one suggested by information criteria, such as the
Akaike Information Criterion (AIC). The specification suggested by ACF/PACF and AIC
often matched; when it did not, we preferred the one that empirically performed better.
This selection criterion led to the definition of different models depending on the variable.
In regard to the specifications for ARIMAX and VAR models, we selected the additional
covariates relying on the results of the Granger causality test, i.e., we included only further
explanatory variables that “Granger-cause” the dependent one; this can be understood as
including only the variables that improve the forecast results of the dependent one.

The choices of the values of p and q in the ARIMAX models were conducted as for the
ARIMA case. Naturally, since we were also considering further covariates, the implemented
specifications were different from those of ARIMA.

The number of lags p in the VAR models were selected using the multivariate version
of AIC. Since for each VAR model we included different covariates in the system (recall that
we selected only those that passed the Granger causality test for the considered dependent
variable of interest), we obtained different specifications for each model. We also considered
the possible presence of cointegration but, given the few processes that were I(1) in first
place, we never encountered such a case. We ran both the Engle–Granger cointegration
test and the Johansen cointegration test, and indeed they excluded such a possibility.
Therefore, when we had one or more I(1) processes in the system, we implemented a VAR
in differences, without the risk of it being mis-specified.

For what concerns Elastic Net and XGBoost, we used a grid search approach on
the train set of each variable to optimize the values of the hyperparameters as well as
the number of inputs, testing the performance of multiple different configurations and
choosing the most performing one. The BiLSTM architecture is the same three-layer stacked
configuration chosen for the BiLSTM backend in our proposed CNN-BiLSTM model.

4. Results

After having implemented the econometric models, we ran diagnostic checks to verify
the homoskedasticity, normality and absence of autocorrelation in the residuals: all the
models passed these tests, confirming the correctness of the selected specifications.

In order to compare the performance of the results obtained with the baseline models
with that obtained from our CNN-BiLSTM architecture, we needed to select an error metric.
We chose two popular metrics regularly employed in evaluation studies: the Mean Absolute
Error (MAE) and the Root Mean Squared Error (RMSE), which is the square root of MSE.
MAE is considered a natural measure of average error [39], while RMSE has the property
of penalizing large errors more, and it is often the preferred measure for regression tasks in
absence of many outliers. Considering N observations, their equations are given by

MAE =
1
n ∑n

i=1|yi − ŷi|, (4)

RMSE =

√
1
N ∑N

i=1(yi − ŷi)
2, (5)

where yi is the true value and ŷi is the value predicted by the model.
The econometric models have been implemented using the statistical package gretl

(Version 2020b), while the Machine Learning models and our proposed architecture were
built with Python (Version 3.7.3). We collected all the results in Tables 1–4.
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Table 1. Multi-step forecast errors for the univariate input models. Text in bold denotes the best
performance (95% confidence level).

Variable ARIMA Elastic Net XGBoost BiLSTM Our
CNN-BiLSTM

RMSE
MAE

RMSE
MAE

RMSE
MAE

RMSE (std. dev.)
MAE (std. dev.)

RMSE (std. dev.)
MAE (std. dev.)

consumption 4.0965 2.9343 3.0921 2.9725 (0.0686) 1.9736 (0.0463)
2.8597 1.9814 2.0763 2.0737 (0.0217) 1.5941 (0.0459)

investments
8.8201 6.0735 6.1441 6.2068 (0.7248) 3.7446 (0.1710)
6.0830 4.0524 3.9671 4.1441 (0.4170) 2.9190 (0.1372)

imports 11.088 8.3575 7.7900 7.8201 (0.4894) 4.3390 (0.1758)
7.1216 6.1214 5.2379 5.1850 (0.4264) 3.3621 (0.1416)

exports 10.599 7.1607 7.2648 7.1996 (0.2561) 5.1139 (0.1191)
6.6301 5.0656 4.9356 4.6305 (0.4166) 3.3972 (0.0941)

inflation
2.2526 1.5051 1.5849 1.5760 (0.0418) 0.8927 (0.0305)
1.4850 0.9833 0.9830 1.0704 (0.0357) 0.6801 (0.0404)

wages 206.60 148.31 166.21 164.75 (8.7017) 141.20 (2.4414)
143.02 101.07 127.92 130.71 (13.638) 95.986 (3.4415)

per capita GDP 145.61 102.61 114.19 148.54 (9.9937) 86.209 (2.9799)
107.06 76.707 87.994 125.79 (11.249) 68.618 (3.3470)

firms’ profits 39.849 28.078 29.166 29.548 (1.0818) 23.911 (0.9131)
28.648 19.137 19.690 19.660 (0.7318) 18.481 (0.5890)

corporate taxation 4.0462 3.2166 3.7096 4.5836 (0.6401) 3.0049 (0.0761)
3.1330 2.4978 2.9433 3.6909 (0.2091) 2.3460 (0.0533)

private savings 47.670 37.938 38.543 39.569 (1.5244) 36.840 (03155)
35.448 27.982 28.764 29.538 (1.2444) 27.392 (0.3602)

expen. durable goods 8.5890 6.0217 6.3203 6.5361 (0.1523) 4.2486 (0.0985)
5.9085 3.8684 4.2891 4.4667 (0.1151) 3.2753 (0.0737)

GDP
2.9405 2.2276 2.2654 2.1998 (0.1925) 1.3007 (0.0669)
2.0696 1.6256 1.5530 1.4258 (0.0305) 0.9965 (0.0445)

household income
4.4913 3.0415 3.3690 3.0825 (0.0092) 2.9496 (0.0172)
2.9752 2.0485 2.1789 1.9547 (0.0143) 1.8623 (0.0161)

government expenditure 2.4130 2.4078 2.6883 2.4379 (0.0322) 1.9379 (0.0894)
1.9668 1.8971 2.0271 2.0667 (0.0413) 1.5853 (0.0892)

house prices 5.5399 2.8767 3.4029 3.6669 (0.1034) 2.3246 (0.0597)
4.2488 1.9062 2.1275 2.5121 (0.1170) 1.8021 (0.0506)

employment rate 0.9396 0.4462 0.6097 1.0915 (0.1840) 0.8562 (0.0315)
0.5943 0.2688 0.3803 0.6800 (0.2310) 0.7342 (0.0032)

unemployment rate 1.2203 0.5638 0.7087 0.6782 (0.0911) 0.4307 (0.0561)
0.8644 0.4000 0.4847 0.4163 (0.0714) 0.3565 (0.0417)

unemp. over 27 weeks 5.8469 3.9508 11.856 5.4433 (0.8422) 1.9146 (0.1641)
3.8736 2.9983 8.7233 4.0504 (0.6085) 1.4947 (0.1287)
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Table 2. Single-step forecast errors for the univariate input models. Text in bold denotes the best
performance (95% confidence level).

Variable ARIMA Elastic Net XGBoost BiLSTM Our
CNN-BiLSTM

RMSE
MAE

RMSE
MAE

RMSE
MAE

RMSE (std. dev.)
MAE (std. dev.)

RMSE (std. dev.)
MAE (std. dev.)

consumption 0.9643 0.9553 1.3197 0.9081 (0.0280) 0.8653 (0.0238)
0.7120 0.6583 0.9289 0.6078 (0.0211) 0.5385 (0.0168)

investments
1.4326 1.4369 2.3368 1.4349 (0.0392) 1.3400 (0.0365)
0.9711 0.9419 1.4167 0.9849 (0.0383) 0.9246 (0.0147)

imports 1.7607 2.3095 2.5519 1.7439 (0.1267) 1.5588 (0.0478)
1.1129 1.6583 1.7599 1.1268 (0.0544) 1.0276 (0.0273)

exports 2.283 2.2169 2.7194 2.3930 (0.1076) 2.0841 (0.0452)
1.6165 1.5940 2.0555 1.5815 (0.0847) 1.3116 (0.0749)

inflation
0.4846 0.9553 0.6456 0.6115 (0.0376) 0.5554 (0.0149)
0.2919 0.6593 0.4136 0.3695 (0.0223) 0.3225 (0.0204)

wages 117.50 98.920 127.54 126.99 (4.5553) 121.86 (1.1490)
50.580 44.557 78.866 81.072 (9.1984) 71.469 (2.7451)

per capita GDP 65.879 65.311 78.466 80.204 (5.5873) 64.167 (0.4711)
37.380 32.470 46.829 56.759 (6.7406) 40.493 (1.7013)

firms’ profits 20.872 19.399 23.328 20.771 (1.5599) 17.165 (0.0945)
10.754 9.1343 13.805 12.611 (0.8903) 9.4561 (0.1147)

corporate taxation 2.2362 2.2831 2.3848 2.5278 (0.1010) 2.0766 (0.0557)
1.3484 1.2905 1.4029 1.7611 (0.1016) 1.1868 (0.0732)

private savings 26.963 28.001 34.706 31.628 (2.3708) 25.765 (0.3857)
18.998 20.012 23.230 21.659 (1.8836) 15.805 (08.280)

expen. durable goods 2.1026 2.0493 3.2429 1.9780 (0.1184) 1.7694 (0.0524)
1.3557 1.4233 2.1295 1.4542 (0.0796) 1.2527 (0.0757)

GDP
0.6006 0.6097 0.7673 0.5439 (0.0094) 0.5086 (0.0291)
0.4002 0.3924 0.5539 0.3475 (0.0222) 0.3165 (0.0240)

household income
0.9904 1.1643 1.7724 1.1304 (0.0906) 0.8914 (0.0281)
0.5434 0.6927 0.9226 0.6783 (0.0442) 0.6085 (0.0277)

government expenditure 0.5634 0.6093 0.7855 0.5975 (0.0394) 0.5191 (0.0098)
0.4001 0.4405 0.6336 0.4525 (0.0304) 0.3923 (0.0062)

house prices 0.7943 0.7671 1.2116 0.9762 (0.0797) 0.8293 (0.0291)
0.5159 0.4363 0.7466 0.6241 (0.0592) 0.5085 (0.0313)

employment rate 0.1316 0.1373 0.2263 0.3539 (0.0297) 0.3716 (0.0058)
0.1029 0.1059 0.1703 0.2360 (0.0404) 0.2422 (0.0141)

unemployment rate 0.1547 0.1592 0.2037 0.1552 (0.0022) 0.1569 (0.0007)
0.1238 0.1279 0.1526 0.1230 (0.0027) 0.1247 (0.0011)

unemp. over 27 weeks 1.2845 1.2896 9.7659 1.3294 (0.0988) 1.5099 (0.0656)
0.9715 0.9756 6.6189 1.0333 (0.0757) 1.1661 (0.0587)
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Table 3. Multi-step forecast errors for the multivariate input models. Text in bold denotes the best
performance (95% confidence level).

Variable ARIMAX VAR Elastic Net XGBoost BiLSTM Our
CNN-BiLSTM

RMSE
MAE

RMSE
MAE

RMSE
MAE

RMSE
MAE

RMSE (std. dev.)
MAE (std. dev.)

RMSE (std. dev.)
MAE (std. dev.)

consumption 4.0460 4.1935 3.6708 3.4773 3.4177 (0.1048) 3.2332 (0.0232)
2.7761 3.0393 2.6287 2.3817 2.5099 (0.0734) 2.2925 (0.0376)

investments 8.3121 11.113 6.9493 6.4072 6.2005 (0.3294) 5.6495 (0.0631)
5.4483 8.8338 4.5236 4.2031 4.2836 (0.2893) 3.8215 (0.1032)

imports 9.5076 8.7729 7.6435 7.8722 6.9976 (0.1286) 6.5982 (0.0757)
7.1720 6.8316 5.4115 5.5894 4.3225 (0.1295) 4.0813 (0.0615)

exports 8.6620 8.7729 7.6435 7.3792 7.3524 (0.1209) 6.9591 (0.1499)
6.4796 6.8316 5.4115 5.3136 5.2083 (0.2321) 4.7479 (0.1894)

inflation 1.9595 1.7622 1.6580 1.5018 1.5093 (0.0164) 1.5165 (0.0353)
1.5155 1.1454 1.2344 0.9855 1.0497 (0.0339) 1.0930 (0.0473)

wages 173.51 164.74 142.60 147.79 154.29 (7.3877) 141.65 (0.4800)
135.74 123.20 94.343 99.890 108.36 (11.398) 91.314 (1.1180)

per capita GDP 131.39 127.81 108.66 109.46 104.87 (2.6097) 97.836 (0.5310)
103.27 99.720 80.566 84.470 79.508 (2.7268) 72.670 (0.4794)

firms’ profits 29.515 29.606 29.169 28.808 28.881 (0.1190) 28.029 (0.0803)
20.162 20.127 20.061 19.758 19.517 (0.1231) 18.927 (0.1183)

corporate taxation 4.1696 3.9330 3.0939 3.5095 3.2635 (0.0528) 2.9983 (0.0300)
3.0078 2.8608 2.3600 2.7044 2.5187 (0.0696) 2.2922 (0.0125)

private savings 39.156 40.942 37.644 37.657 36.509 (0.3576) 35.862 (0.2169)
29.315 30.340 27.215 27.197 26.957 (0.1213) 26.416 (0.0249)

expen. durable goods 7.5644 6.9866 6.7296 6.6235 6.7366 (0.1282) 6.3273 (0.1463)
5.0644 5.3048 4.3630 4.4179 4.7585 (0.2162) 4.2023 (0.0660)

GDP 3.2227 3.3951 2.5851 2.3209 2.2353 (0.1251) 2.0479 (0.0587)
2.4332 2.3968 1.8965 1.6542 1.6550 (0.2241) 1.3924 (0.0620)

household income 3.5447 3.0540 3.1000 3.4116 3.0019 (0.0269) 2.8639 (0.1174)
2.5716 2.0809 2.1340 2.1781 2.0218 (0.0438) 1.9530 (0.0519)

government expen. 3.5540 4.8023 2.0151 2.3825 2.3299 (0.0241) 1.5517 (0.0455)
2.7296 3.4904 1.5048 1.8464 1.8869 (0.0480) 1.2469 (0.0295)

house prices 4.1156 5.2339 3.4730 3.4337 3.6274 (0.0694) 3.2234 (0.0437)
2.7895 4.0954 2.5971 2.4875 2.7029 (0.3359) 2.3406 (0.0359)

employment rate 2.0070 4.2618 0.4970 0.5008 0.5733 (0.1733) 0.3754 (0.0168)
1.5946 3.9164 0.3281 0.3830 0.4789 (0.1207) 0.2988 (0.0182)

unemployment rate 2.0894 2.3794 0.5858 0.5554 0.6595 (0.0508) 0.4636 (0.0306)
1.6533 1.7583 0.4443 0.4153 0.4667 (0.0342) 0.3147 (0.0314)

unemp. over 27 w. 17.772 17.696 2.9366 9.5743 3.7248 (0.6547) 2.8321 (0.0330)
15.120 17.218 2.2811 6.9341 3.1515 (0.5486) 2.2403 (0.0075)

Table 4. Single-step forecast errors for the multivariate input models. Text in bold denotes the best
performance (95% confidence level).

Variable ARIMAX VAR Elastic Net XGBoost BiLSTM Our
CNN-BiLSTM

RMSE
MAE

RMSE
MAE

RMSE
MAE

RMSE
MAE

RMSE (std. dev.)
MAE (std. dev.)

RMSE (std. dev.)
MAE (std. dev.)

consumption 1.7566 2.9969 1.1707 1.6084 1.9307 (0.1019) 2.1592 (0.1323)
1.2117 2.4505 0.8992 1.2032 1.4358 (0.1144) 1.6629 (0.1393)

investments 5.3641 10.213 2.7433 2.8168 2.5233 (0.1986) 2.2397 (0.2277)
3.6766 9.2144 2.2516 1.8298 1.8002 (0.1657) 1.6682 (0.1700)

imports 5.3600 6.0002 2.8470 3.4139 3.2036 (0.2811) 2.3958 (0.0599)
4.3036 4.7285 2.1585 2.0686 2.4632 (0.1612) 1.7573 (0.0653)

exports 7.5044 7.2302 3.9126 3.9077 4.4484 (0.3598) 3.6799 (0.1089)
5.1107 5.4215 2.8886 2.7276 3.0564 (0.1857) 2.7379 (0.1062)
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Table 4. Cont.

Variable ARIMAX VAR Elastic Net XGBoost BiLSTM Our
CNN-BiLSTM

inflation
2.4004 5.8533 0.6923 0.7326 1.3577 (0.1675) 1.1152 (0.2807)
1.9318 4.6454 0.4677 0.4734 1.0098 (0.1148) 0.8316 (0.2151)

wages 144.23 138.73 117.72 124.43 118.26 (2.1950) 114.22 (2.0562)
107.37 92.062 68.958 75.590 68.691 (2.4276) 63.500 (1.9796)

per capita GDP 87.899 78.678 64.985 83.200 71.752 (2.4801) 61.601 (1.3644)
62.521 59.400 45.917 54.800 49.911 (0.9571) 42.292 (2.1096)

firms’ profits 23.038 24.186 22.729 28.622 21.102 (0.6201) 18.358 (0.3645)
16.984 17.132 12.229 18.731 13.122 (0.3800) 11.501 (0.6107)

corporate taxation 3.5300 3.2948 2.3399 2.5744 2.4300 (0.1239) 2.2880 (0.0093)
2.6559 2.6556 1.5964 1.5975 1.6751 (0.0506) 1.5749 (0.0094)

private savings 29.915 32.496 28.248 37.090 33.859 (1.1122) 25.749 (0.4926)
21.136 22.814 16.479 23.940 22.989 (1.0929) 15.895 (0.2147)

expen. durable goods 7.6315 15.597 5.2789 5.0983 7.0292 (0.3995) 4.2094 (0.1529)
4.9930 12.497 3.4234 3.2737 5.0255 (0.7138) 3.1987 (0.1189)

GDP
1.3641 2.2758 0.9309 0.9349 1.1034 (0.0647) 0.8727 (0.0372)
0.9897 1.9223 0.7082 0.7232 0.7880 (0.0315) 0.6515 (0.0343)

household income
3.1828 7.3236 2.1474 1.9454 2.2263 (0.1348) 2.2520 (0.1713)
2.2418 5.7770 1.4936 1.0294 1.5581 (0.1717) 1.6404 (0.1257)

government expen. 3.8283 2.8563 1.2604 1.0056 1.1806 (0.1617) 1.0664 (0.0420)
3.1686 2.2076 1.0073 0.8085 0.8747 (0.1080) 0.8037 (0.0320)

house prices 4.0064 3.2791 0.7930 1.3561 1.3317 (0.1338) 1.2537 (0.0430)
2.7954 2.7633 0.6006 0.9131 1.0029 (0.1015) 0.9268 (0.0668)

employment rate 2.0802 0.6177 0.1319 0.2055 0.2540 (0.0274) 0.2182 (0.0099)
1.6528 0.4981 0.1027 0.1618 0.1981 (0.0160) 0.1700 (0.0067)

unemployment rate 1.8229 2.2742 0.1414 0.3147 0.2357 (0.0259) 0.2013 (0.0022)
1.3537 1.8059 0.1287 0.2085 0.1915 (0.0240) 0.1566 (0.0021)

unemp. over 27 w. 19.020 12.429 1.1769 10.796 1.9132 (0.2058) 1.7467 (0.0925)
16.049 11.726 0.9036 7.5981 1.4810 (0.2187) 1.3394 (0.0701)

For the sake of equal comparisons, we compared the MAE/RMSE of the ARIMA
models and univariate Elastic Net/XGBoost/BiLSTM with the MAE/RMSE obtained
from a univariate input CNN-BiLSTM (that used only lagged values of the dependent
variable), and we compared the MAE/RMSE of the ARIMAX, VAR, and multivariate
Elastic Net/XGBoost/BiLSTM models with the ones obtained from a multivariate input
CNN-BiLSTM (that used, in addition to the lagged values of the dependent variable, also
lagged values from additional covariates). As mentioned in Section 3, we selected as
additional covariates to be added to the multivariate input models only those variables
that Granger-caused the dependent variable. We reported the selected variables in the
Appendix A (Table A1).

In the above tables, for each variable, the text in bold denotes the best performance
for the considered metric. From Tables 1 and 2, we can see that for the univariate time
series analysis, the forecast errors of our architecture were in general much lower than
the competitor models, in particular for the multi-step forecast. Indeed, when trying to
forecast the next 12 values, the CNN-BiLSTM architecture significatively performed better
for 17 variables out of 18. For the one-step forecast, there were only six variables where
the results of the competitor models were significantly better, and even in those cases the
results of our architecture were often close.

We obtained the same excellent results for multi-step forecasting when we operated
in a multivariate time series context (see Table 3). The multivariate one-step forecast



Eng. Proc. 2023, 39, 33 11 of 15

results (Table 4) were also satisfactory: our model performed better than the multivariate
competitor models for 10 variables out of 18.

It should be noted that, for all the models, the multivariate results were in general
significantly worse than the univariate case. In particular, for what concerns our proposed
model, we guess that one reason behind this worsening is related to the higher amount
of information (coming from multiple time series) that was processed by the network:
to determine the best configuration of the parameters, the network tries to minimize a
non-convex cost function that lies in a very high dimensional space, and non-relevant
information could make the optimization process to become more easily stuck in poor local
minima. We think that a longer training combined with injecting more noise (for instance,
by reducing the mini-batch size) could solve the problem, and we plan to study this issue
in greater detail in future studies.

It should also be mentioned that we cannot evaluate the quality of a Deep Learning
architecture from a single run. Indeed, as a consequence of the random weight initialization
and the optimization process, there is an inherent stochastic component in the obtained
results. The results reported in Tables 1–4 are the average mean of 10 different evaluations of
the Deep Learning models, where in brackets we reported the standard deviation. For each
variable, to confirm statistically significant differences in the results, we ran independent
t-tests with p < 0.05.

We can also visualize the predictions of the competitor models with those of our
architecture. As an example, let us consider the variable “Investments”. We compared the
one-step forecasts (Figure 3) and the multi-step forecasts (Figure 4) obtained with ARIMA,
Elastic Net, and the CNN-BiLSTM architecture.
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5. Conclusions

This paper addresses the problem of obtaining increasingly accurate forecasts for
different macroeconomic indicators in order to offer a valid support for policymakers
to better plan economic policies. With the recent advances in Machine Learning (and in
particular Deep Learning), new investigation techniques are emerging, and they are gaining
popularity among researchers from different disciplines. However, in the context of macroe-
conomic forecasting, these techniques are not yet widely used (except for some financial
applications), and other more “traditional” econometric models are often preferred.

The question we asked ourselves was to understand how much a new model im-
plemented with these techniques was able to compete with the traditional tools; to this
purpose, we selected two error metrics (MAE and RMSE) and we compared the forecast
errors of the considered models. In constructing our architecture, we implemented a
“hybrid” model, combining a CNN to extract the salient features of the time series and a
Bidirectional LSTM backend to learn the timing relationships and perform the forecasts.
While econometric models are certainly easier to fit and are more interpretable, for what
purely concerns the forecasting component the results obtained with the proposed Deep
Learning architecture are very promising.

The main problem when applying these techniques to time series (in particular macroe-
conomic time series) is that to obtain good forecast results, one in general needs a huge
number of observations. Deep Learning is not suitable in contexts where the time series
are too short, or where the measurements are not frequent enough. However, we can
conclude that, with the data availability that increases more and more over time, Deep
Learning techniques should be taken into serious consideration to make predictions about
the evolution of the economy.

Our model can be further improved: first, we selected the model hyperparameters
with a “trial and error” approach, and an accurate grid search is likely to lead to better
results. However, the focus of this work was on producing better (or on par) results than
“traditional” methods, and not on finding the best possible architecture configuration.
Effective Deep Learning applications to time series analysis are being developed only
recently and there is certainly room for further improvement. We believe that new more
performing algorithms and architectures will be available shortly.
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Appendix A

Appendix A.1

Table A1. Additional covariates added in the multivariate input models for each dependent variable.

consumption
inflation, per capita GDP, corporate taxation, private savings, expen.

durable goods, household income, unemployment rate, unempl. over 27
weeks

investments
consumption, imports, exports, per capita GDP, firms’ profits, expen.

durable goods, GDP, house prices, employment rate, unemployment rate,
unempl. over 27 weeks

https://github.com/staale92/cnn-bilstm-macroeconomic-forecasting
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Table A1. Cont.

imports consumption, exports, inflation, GDP, expen. durable goods, household
income, government expenditure, house prices

exports consumption, investments, inflation, GDP, expen. durable goods,
government expenditure, unemployment rate

inflation corporate taxation, private savings, GDP, government expenditure,
unempl. over 27 weeks

wages per capita GDP, firms’ profits, corporate taxation, household income

per capita GDP investments, wages, firms’ profits, corporate taxation, private savings,
GDP, household income, employment rate

firms’ profits wages, per capita GDP, Private savings, GDP

corporate taxation wages, firms’ profits, private savings, unemployment rate

private savings wages, per capita GDP, firms’ profits, household income

expen. durable good inflation, wages, firms’ profits, private savings, employment rate,
unemployment rate, unempl. over 27 weeks

GDP
consumption, investments, per capita GDP, firms’ profits, expen. durable

goods, household income, government expenditure, house prices,
unemployment rate

household income
consumption, imports, inflation, wages, firms’ profits, private savings,
expen. durable goods, house prices, employment rate, unemployment

rate, unempl. over 27 weeks

government expenditure investments, exports, inflation, expen. durable goods, household income,
unemployment rate

house prices imports, exports, inflation, corporate taxation, expen. durable goods,
GDP, government expenditure, employment rate, unemployment rate

employment rate consumption, inflation, per capita GDP, GDP, household income,
government expenditure

unemployment rate consumption, inflation, expen. durable goods, GDP, employment rate

unempl. over 27 weeks private savings, imports, exports, GDP, house prices, unemployment rate

Appendix A.2. Specifications of the ARIMA, ARIMAX, and VAR Models

For each variable we report, in order, (p,d,q) specification of multi-step ARIMA; (p,d,q)
specification of single-step ARIMA; (p,d,q) specification of ARIMAX; (l) lags for VAR.

Consumption (3,0,4), (4,0,1), (4,0,4), (8); investments (2,0,2), (4,0,1), (4,0,4), (5); imports
(2,0,4), (4,0,2), (0,0,4), (8); exports (6,0,4), (4,0,1), (0,0,4), (8); inflation (8,0,2), (4,0,1), (4,0,2),
(8); wages (3,1,2), (2,1,1), (4,1,2), (7); per capita GDP (8,1,4), (2,1,1), (5,1,4), (7); firms’ profits
(2,1,2), (3,1,1), (4,1,4), (7); corporate taxation (8,1,1), (3,1,1), (7,1,4), (7); private savings (3,1,4),
(3,1,1), (4,1,4), (7); expen. durable goods (3,0,4), (4,0,1), (0,0,4), (7); GDP (8,0,2), (4,0,1), (8,0,4),
(5); household income (3,0,4), (3,0,2), (0,0,4), (5); government expenditure (4,0,4), (4,0,1),
(4,0,4), (8); house prices (6,0,4), (4,0,1), (8,0,4), (8); employment rate (8,0,3), (4,0,1), (4,0,2), (8);
unemployment rate (8,0,4), (4,0,1), (7,0,3), (8); unemp. over 27 weeks (8,0,4), (4,0,2), (4,0,4), (7).
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