Incoherent Digital Holography for Multidimensional Motion Picture Imaging †
Abstract
:1. Introduction
2. Digital Holography Systems Adopting Single-Shot Phase-Shifting Interferometry for Multidimensional Motion Picture Imaging
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poon, T.-C.; Korpel, A. Optical transfer function of an acousto-optic heterodyning image processor. Opt. Lett. 1979, 4, 317–319. [Google Scholar] [CrossRef] [PubMed]
- Itoh, K.; Inoue, T.; Yoshida, T.; Ichioka, Y. Interferometric super-multispectral imaging. Appl. Opt. 1990, 29, 1625–1630. [Google Scholar] [CrossRef] [PubMed]
- Mugnier, L.M.; Sirat, G.Y. On-axis conoscopic holography without a conjugate image. Opt. Lett. 1992, 17, 294–296. [Google Scholar] [CrossRef] [PubMed]
- Rosen, J.; Brooker, G. Digital spatially incoherent Fresnel holography. Opt. Lett. 2007, 32, 912–914. [Google Scholar] [CrossRef]
- Kim, M.K. Full color natural light holographic camera. Opt. Express 2013, 21, 9636–9642. [Google Scholar] [CrossRef]
- Vijayakumar, A.; Kashter, Y.; Kelner, R.; Rosen, J. Coded aperture correlation holography—A new type of incoherent digital holograms. Opt. Express 2016, 24, 12430–12441. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, H.; Zhang, W.; Jin, G.; Cao, L.; Barbastathis, G. Singleshot lensless imaging with Fresnel zone aperture and incoherent illumination. Light Sci. Appl. 2020, 9, 53. [Google Scholar] [CrossRef]
- Rosen, J.; Vijayakumar, A.; Kumar, M.; Rai, M.R.; Kelner, R.; Kashter, Y.; Bulbul, A.; Mukherjee, S. Recent advances in self-interference incoherent digital holography. Adv. Opt. Photon. 2019, 11, 1–66. [Google Scholar] [CrossRef]
- Hong, J.; Kim, M.K. Overview of techniques applicable to self-interference incoherent digital holography. J. Eur. Opt. Soc. Rapid Publ. 2013, 8, 13077. [Google Scholar] [CrossRef]
- Liu, J.-P.; Tahara, T.; Hayasaki, Y.; Poon, T.-C. Incoherent digital holography: A review. Appl. Sci. 2018, 8, 143. [Google Scholar] [CrossRef]
- Tahara, T.; Quan, X.; Otani, R.; Takaki, Y.; Matoba, O. Digital holography and its multidimensional imaging applications: A review. Microscopy 2018, 67, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Rosen, J.; Alford, S.; Anand, V.; Art, J.; Bouchal, P.; Bouchal, Z.; Erdenebat, M.U.; Huang, L.; Ishii, A.; Juodkazis, S.; et al. Roadmap on recent progress in FINCH technology. J. Imaging 2021, 7, 197. [Google Scholar] [CrossRef] [PubMed]
- Tahara, T. Review of incoherent digital holography: Applications to multidimensional incoherent digital holographic microscopy and palm-sized digital holographic recorder-holosensor. Front. Photonics 2022, 2, 829139. [Google Scholar] [CrossRef]
- Tahara, T.; Zhang, Y.; Rosen, J.; Anand, V.; Cao, L.; Wu, J.; Koujin, T.; Matsuda, A.; Ishii, A.; Kozawa, Y.; et al. Roadmap of incoherent digital holography. Appl. Phys. B 2022, 128, 193. [Google Scholar] [CrossRef]
- Schilling, B.W.; Poon, T.-C.; Indebetouw, G.; Storrie, B.; Shinoda, K.; Suzuki, Y.; Wu, M.H. Three-dimensional holographic fluorescence microscopy. Opt. Lett. 1997, 22, 1506–1508. [Google Scholar] [CrossRef] [PubMed]
- Rosen, J.; Brooker, G. Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nat. Photon. 2008, 2, 190–195. [Google Scholar] [CrossRef]
- Quan, X.; Matoba, O.; Awatsuji, Y. Single-shot incoherent digital holography using a dual-focusing lens with diffraction gratings. Opt. Lett. 2017, 42, 383–386. [Google Scholar] [CrossRef]
- Tahara, T.; Ishii, A.; Ito, T.; Ichihashi, Y.; Oi, R. Single-shot wavelength-multiplexed digital holography for 3D fluorescent microscopy and other imaging modalities. Appl. Phys. Lett. 2020, 117, 031102. [Google Scholar] [CrossRef]
- Tahara, T.; Koujin, T.; Matsuda, A.; Ishii, A.; Ito, T.; Ichihashi, Y.; Oi, R. Incoherent color digital holography with computational coherent superposition for fluorescence imaging [Invited]. Appl. Opt. 2021, 60, A260–A267. [Google Scholar] [CrossRef]
- Tahara, T.; Kozawa, Y.; Ishii, A.; Wakunami, K.; Ichihashi, Y.; Oi, R. Two-step phase-shifting interferometry for self-interference digital holography. Opt. Lett. 2021, 46, 669–672. [Google Scholar] [CrossRef]
- Tahara, T.; Kanno, T.; Arai, Y.; Ozawa, T. Single-shot phase-shifting incoherent digital holography. J. Opt. 2017, 19, 065705. [Google Scholar] [CrossRef]
- Nobukawa, T.; Muroi, T.; Katano, Y.; Kinoshita, N.; Ishii, N. Single-shot phase-shifting incoherent digital holography with multiplexed checkerboard phase gratings. Opt. Lett. 2018, 43, 1698–1701. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.; Joo, K.-I.; Lee, T.-H.; Kim, H.-R.; Yim, J.; Do, H.; Min, S.-W. Compact self-interference incoherent digital holo-graphic camera system with real-time operation. Opt. Express 2019, 27, 4814–4833. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Zhang, Q.; Wang, J.; Liu, J. Single-shot Fresnel incoherent digital holography based on geometric phase lens. J. Mod. Opt. 2020, 67, 92–98. [Google Scholar] [CrossRef]
- Imbe, M. Radiometric temperature measurement by incoherent digital holography. Appl. Opt. 2019, 58, A82–A89. [Google Scholar] [CrossRef] [PubMed]
- Nobukawa, T.; Katano, Y.; Goto, M.; Muroi, T.; Hagiwara, K.; Ishii, N. Grating-based in-line geometric-phase-shifting incoherent digital holographic system toward 3D videography. Opt. Express 2022, 30, 27825–27840. [Google Scholar] [CrossRef]
- Tahara, T. Single-shot full-color holography with sunlight. In Proceedings of the OPTICA Digital Holography and 3-D Imaging 2022, Cambridge, UK, 1–4 August 2022. M1A.6. [Google Scholar]
- Tahara, T.; Kozawa, Y.; Shimobaba, T. 22 fps motion-picture recording of incoherent holograms with single-shot natural-light full-color digital holography system. In Proceedings of the OSJ Optics and Photonics Japan 2022, Utsunomiya, Japan, 13–16 November 2022. 16pC5. (In Japanese). [Google Scholar]
- Vijayakumar, A.; Rosen, J. Spectrum and space resolved 4D imaging by coded aperture correlation holography (COACH) with diffractive objective lens. Opt. Lett. 2017, 42, 947–950. [Google Scholar] [CrossRef]
- Anand, V.; Ng, S.H.; Maksimovic, J.; Linklater, D.; Katkus, T.; Ivanova, E.P.; Judkazis, S. Single shot multispectral multidimensional imaging using chaotic waves. Sci. Rep. 2020, 10, 13902. [Google Scholar] [CrossRef]
- Tahara, T.; Ito, T.; Ichihashi, Y.; Oi, R. Multiwavelength three-dimensional microscopy with spatially incoherent light, based on computational coherent superposition. Opt. Lett. 2020, 45, 2482–2485. [Google Scholar] [CrossRef]
- Tahara, T. Multidimension-multiplexed full-phase-encoding holography. Opt. Express 2022, 30, 21582–21598. [Google Scholar] [CrossRef]
- Tahara, T.; Kozawa, Y.; Matsuda, A.; Oi, R. Quantitative phase imaging with single-path phase-shifting digital holography using a light-emitting diode. OSA Contin. 2021, 4, 2918–2927. [Google Scholar] [CrossRef]
- Tahara, T.; Kozawa, Y.; Oi, R. Single-path single-shot phase-shifting digital holographic microscopy without a laser light source. Opt. Express 2022, 30, 1182–1194. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Ueda, K.-I. Real-time wavefront measurement based on diffraction grating holography. Opt. Commun. 2003, 225, 1–6. [Google Scholar] [CrossRef]
- Millerd, J.; Brock, N.; Hayes, J.; Morris, M.N.; Novak, M.; Wyant, J. Pixelated phase-mask dynamic interferometer. Proc. SPIE 2004, 5531, 304. [Google Scholar]
- Awatsuji, Y.; Sasada, M.; Kubota, T. Parallel quasi-phase-shifting digital holography. Appl. Phys. Lett. 2004, 85, 1069–1071. [Google Scholar] [CrossRef]
- Okamoto, R.; Tahara, T. Precision limit for simultaneous phase and transmittance estimation with phase-shifting interferometry. Phys. Rev. A 2021, 104, 033521. [Google Scholar] [CrossRef]
- Tsuruta, M.; Fukuyama, T.; Tahara, T.; Takaki, Y. Fast image reconstruction technique for parallel phase-shifting digital holography. Appl. Sci. 2021, 11, 11343. [Google Scholar] [CrossRef]
- Shimobaba, T.; Tahara, T.; Hoshi, I.; Shiomi, H.; Wang, F.; Hara, T.; Kakue, T.; Ito, T. Real-valued diffraction calculations for computational holography. Appl. Opt. 2022, 61, B96–B102. [Google Scholar] [CrossRef]
- Hara, T.; Kakue, T.; Shimobaba, T.; Ito, T. Design and implementation of special-purpose computer for incoherent digital holography. IEEE Access 2022, 10, 76906–76912. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahara, T.; Kozawa, Y.; Nakamura, T.; Matsuda, A.; Shimobaba, T. Incoherent Digital Holography for Multidimensional Motion Picture Imaging. Eng. Proc. 2023, 34, 3. https://doi.org/10.3390/HMAM2-14153
Tahara T, Kozawa Y, Nakamura T, Matsuda A, Shimobaba T. Incoherent Digital Holography for Multidimensional Motion Picture Imaging. Engineering Proceedings. 2023; 34(1):3. https://doi.org/10.3390/HMAM2-14153
Chicago/Turabian StyleTahara, Tatsuki, Yuichi Kozawa, Tomoya Nakamura, Atsushi Matsuda, and Tomoyoshi Shimobaba. 2023. "Incoherent Digital Holography for Multidimensional Motion Picture Imaging" Engineering Proceedings 34, no. 1: 3. https://doi.org/10.3390/HMAM2-14153