Sensitive Voltammetric Sensor for Thymol and Carvacrol Based on the Electropolymerized Thymolphtalein †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Electrodeposition of Polythymolphthalein at the MWNT-Modified Electrode
3.2. Electrooxidation of Isopropylmethylphenols at the Polythymolphthalein/MWCNTs/GCE
3.3. Quantification of Isopropylmethylphenols Using a Polythymolphthalein-Based Sensor
3.4. Quantification of Total Isopropylmethylphenols in Thyme and Oregano Spices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fachini-Queiroz, F.C.; Kummer, R.; Estevão-Silva, C.F.; de Barros Carvalho, M.D.; Cunha, J.M.; Grespan, R.; Bersani-Amado, C.A.; Cuman, R.K.N. Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evid. Based Complement. Alternat. Med. 2012, 2012, 657026. [Google Scholar] [CrossRef] [Green Version]
- Falcone, P.; Speranza, B.; Del Nobile, M.A.; Corbo, M.R.; Sinigaglia, M.J. A study on the antimicrobial activity of thymol intended as a natural preservative. Food Pro. 2005, 68, 1664–1670. [Google Scholar] [CrossRef]
- Nostro, A.; Papalia, T. Antimicrobial activity of carvacrol: Current progress and future prospectives. Recent Pat. Antiinfect. Drug Discov. 2012, 7, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Yanishlieva, N.V.; Marinova, E.M.; Gordon, M.H.; Raneva, V.G. Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chem. 1999, 64, 59–66. [Google Scholar] [CrossRef]
- Naghdi Badi, H.; Abdollahi, M.; Mehrafarin, A.; Ghorbanpour, M.; Tolyat, S.; Qaderi, A.; Ghiaci Yekta, M. An overview on two valuable natural and bioactive compounds, thymol and carvacrol, in medicinal plants. J. Med. Plants. 2017, 16, 1–32. [Google Scholar]
- Ziyatdinova, G.; Budnikov, H. Natural phenolic antioxidants in bioanalytical chemistry: State of the art and prospects of development. Russ. Chem. Rev. 2015, 84, 194–224. [Google Scholar] [CrossRef]
- Michelitsch, A.; Rittmannsberger, A.; Hüfner, A.; Rückert, U.; Likussar, W. Determination of isopropylmethylphenols in black seed oil by differential pulse voltammetry. Phytochem. Anal. 2004, 15, 320–324. [Google Scholar] [CrossRef]
- Robledo, S.N.; Pierini, G.D.; Nieto, C.H.D.; Fernández, H.; Zon, M.A. Development of an electrochemical method to determine phenolic monoterpenes in essential oils. Talanta 2019, 196, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Lau, O.-W.; Luk, S.-F.; Wong, W.-C. Simultaneous determination of methyl salicylate and thymol in various pharmaceutical formulations by differential-pulse voltammetry using a glassy carbon electrode. Analyst 1988, 113, 865–868. [Google Scholar] [CrossRef]
- Kowalcze, M.; Jakubowska, M. Voltammetric determination of carvacrol on boron doped diamond electrode. Anal. Chim. Acta 2019, 1045, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Stanković, D.M. Sensitive voltammetric determination of thymol in essential oil of Carum copticum seeds using boron-doped diamond electrode. Anal. Biochem. 2015, 486, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Piech, R.; Paczosa-Bator, B. Application of glassy carbon electrode modified with Nafion/MWCNTs for sensitive voltammetric determination of thymol. Acta Pol. Pharm. 2015, 72, 1081–1088. [Google Scholar]
- Ziyatdinova, G.K.; Romashkina, S.A.; Ziganshina, E.R.; Budnikov, H.C. Voltammetric determination of thymol on an electrode modified by coimmobilized carboxylated multiwalled carbon nanotubes and surfactants. J. Anal. Chem. 2018, 73, 63–70. [Google Scholar] [CrossRef]
- Fuentes, F.G.; Gil, M.Á.L.; Mendoza, S.; Escarpa, A. Electrochemical screening of biomarkers in chemotype Mexican oregano oils on single-walled carbon nanotubes screen-printed electrodes. Electroanalysis 2011, 23, 2212–2216. [Google Scholar] [CrossRef]
- Behpour, M.; Masouma, S.; Meshkia, M. Determination of trace amounts of thymol and caffeic acid in real samples using a graphene oxide nanosheet modified electrode application of experimental design in voltammetric studies. RSC Adv. 2014, 4, 14270–14280. [Google Scholar] [CrossRef]
- Gan, T.; Lv, Z.; Deng, Y.; Sun, J.; Shi, Z.; Liu, Y. Facile synthesis of monodisperse Ag@C@Ag core-double shell spheres for application in the simultaneous sensing of thymol and phenol. New J. Chem. 2015, 39, 6244–6252. [Google Scholar] [CrossRef]
- Aghamohseni, B.; Hassaninejad-Darzi, S.K.; Asadollahi-Baboli, M. A new sensitive voltammetric determination of thymol based on MnY nanozeolite modified carbon paste electrode using response surface methodology. Microchem. J. 2019, 145, 819–832. [Google Scholar] [CrossRef]
- Zhao, X.; Du, Y.; Ye, W.; Lu, D.; Xia, X.; Wang, C. Sensitive determination of thymol based on CeO2 nanoparticle-decorated graphene hybrid film. New J. Chem. 2013, 37, 4045–4051. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Ziganshina, E.; Cong, P.N.; Budnikov, H. Voltammetric determination of thymol in oregano using CeO2-modified electrode in Brij® 35 micellar medium. Food Anal. Methods 2017, 10, 129–136. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Budnikov, H. MWNT-based electrode for the voltammetric quantification of carvacrol. Food Anal. Methods 2021, 14, 401–410. [Google Scholar] [CrossRef]
- Mohammadi, S.Z.; Beitollahi, H.; Rohani, T.; Allahabadi, H. Carvacrol electrochemical reaction characteristics on screen printed electrode modified with La2O3/Co3O4 nanocomposite. J. Electrochem. Sci. Eng. 2019, 9, 113–123. [Google Scholar] [CrossRef]
- Ziyatdinova, G.K.; Zhupanova, A.S.; Budnikov, H.C. Electrochemical sensors for the simultaneous detection of phenolic antioxidants. J. Anal. Chem. 2022, 77, 155–172. [Google Scholar] [CrossRef]
- Guss, E.V.; Ziyatdinova, G.K.; Zhupanova, A.S.; Budnikov, H.C. Voltammetric determination of quercetin and rutin in their simultaneous presence on an electrode modified with polythymolphthalein. J. Anal. Chem. 2020, 75, 526–535. [Google Scholar] [CrossRef]
- Chandrashekar, B.N.; Swamy, B.E.K.; Mahesh, K.R.V.; Chandra, U.; Sherigara, B.S. Electrochemical studies of bromothymol blue at surfactant modified carbon paste electrode by using cyclic voltammetry. Int. J. Electrochem. Sci. 2009, 4, 471–480. [Google Scholar]
- Ziyatdinova, G.; Guss, E.; Yakupova, E. Electrochemical sensors based on the electropolymerized natural phenolic antioxidants and their analytical application. Sensors 2021, 21, 8385. [Google Scholar] [CrossRef] [PubMed]
- Mastelić, J.; Jerković, I.; Blazević, I.; Poljak-Blazi, M.; Borović, S.; Ivancić-Baće, I.; Smrecki, V.; Zarković, N.; Brcić-Kostic, K.; Vikić-Topić, D.; et al. Comparative study on the antioxidant and biological activities of carvacrol, thymol, and eugenol derivatives. J. Agric. Food Chem. 2008, 56, 3989–3996. [Google Scholar] [CrossRef]
- Tonello, N.V.; D’Eramo, F.; Marioli, J.M.; Crevillen, A.G.; Escarpa, A. Extraction-free colorimetric determination of thymol and carvacrol isomers in essential oils by pH-dependent formation of gold nanoparticles. Microchim. Acta 2018, 185, 352. [Google Scholar] [CrossRef]
Electrode | Eox (V) | Iox (μA) |
---|---|---|
GCE | 0.655 | 0.16 ± 0.01 |
MWCNTs/GCE and | 0.564 | 0.26 ± 0.01 |
Polythymolphthalein/MWCNTs/GCE | 0.564 | 0.50 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziyatdinova, G.; Chernousova, N. Sensitive Voltammetric Sensor for Thymol and Carvacrol Based on the Electropolymerized Thymolphtalein. Eng. Proc. 2023, 31, 5. https://doi.org/10.3390/ASEC2022-13835
Ziyatdinova G, Chernousova N. Sensitive Voltammetric Sensor for Thymol and Carvacrol Based on the Electropolymerized Thymolphtalein. Engineering Proceedings. 2023; 31(1):5. https://doi.org/10.3390/ASEC2022-13835
Chicago/Turabian StyleZiyatdinova, Guzel, and Natalia Chernousova. 2023. "Sensitive Voltammetric Sensor for Thymol and Carvacrol Based on the Electropolymerized Thymolphtalein" Engineering Proceedings 31, no. 1: 5. https://doi.org/10.3390/ASEC2022-13835
APA StyleZiyatdinova, G., & Chernousova, N. (2023). Sensitive Voltammetric Sensor for Thymol and Carvacrol Based on the Electropolymerized Thymolphtalein. Engineering Proceedings, 31(1), 5. https://doi.org/10.3390/ASEC2022-13835