Passive Temperature Excursion of Electronic Devices Using Ionic Wind †
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
Experimental Results Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moreau, E. Airflow Control by Non-Thermal Plasma Actuators. J. Phys. D Appl. Phys. 2007, 40, 605–636. [Google Scholar] [CrossRef]
- Hsu, C.P.; Jewell-Larsen, N.E.; Sticht, C.; Krichtafovitch, I.A.; Mamishev, A.V. Heat Transfer Enhancement Measurement for Microfabricated Electrostatic Fluid Accelerators. In Proceedings of the 2008 Twenty-fourth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 16–20 March 2008. [Google Scholar] [CrossRef]
- Jewell-Larsen, N.E.; Ran, H.; Zhang, Y.; Schwiebert, M.K.; Honer, K.A.; Mamishev, A.V. Electrohydrodynamic (Ehd) Cooled Laptop. In Proceedings of the 2009 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 15–19 March 2009; pp. 261–266. [Google Scholar] [CrossRef]
- Jewell-Larsen, N.E. Optimization and Miniaturization of Electrostatic Air Pumps for Thermal Management. Ph.D. Thesis, University of Washington, Washington, DC, USA, 2013. [Google Scholar]
- Schlitz, D.; Singhal, V. An Electro-Aerodynamic Solid-State Fan and Cooling System. In Proceedings of the 2008 Twenty-Fourth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 16–20 March 2008; pp. 46–49. [Google Scholar]
- Liang, W.J.; Lin, T.H. The Characteristics of Ionic Wind and Its Effect on Electrostatic Precipitators. Aerosol Sci. Technol. 1994, 20, 330–344. [Google Scholar] [CrossRef]
- Weinberg, F.; Carleton, F.; Kara, D.; Xavier, A.; Dunn-Rankin, D.; Rickard, M. Inducing Gas Flow and Swirl in Tubes Using Ionic Wind from Corona Discharges. Exp. Fluids 2006, 40, 231–237. [Google Scholar] [CrossRef]
- Kim, C.; Park, D.; Noh, K.C.; Hwang, J. Velocity and Energy Conversion Efficiency Characteristics of Ionic Wind Generator in a Multistage Configuration. J. Electrostat. 2010, 68, 36–41. [Google Scholar] [CrossRef]
- Li, L.; Lee, S.J.; Kim, W.; Kim, D. An Empirical Model for Ionic Wind Generation by a Needle-to-Cylinder Dc Corona Discharge. J. Electrostat. 2015, 73, 125–130. [Google Scholar] [CrossRef]
Parameters | Test Values | Unit |
---|---|---|
Voltages applied (V) | 5, 6, 7, 8, 9, 10 | kV |
Electrode distances (G) | −10, −5, 0, 5, 10, 15, 20 | mm |
Cylinder electrode lengths (L) | 10, 20, 30 | mm |
Cylinder electrode diameters (D) | 25.4 | mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, M.M.; Hussain, A. Passive Temperature Excursion of Electronic Devices Using Ionic Wind. Eng. Proc. 2022, 23, 17. https://doi.org/10.3390/engproc2022023017
Iqbal MM, Hussain A. Passive Temperature Excursion of Electronic Devices Using Ionic Wind. Engineering Proceedings. 2022; 23(1):17. https://doi.org/10.3390/engproc2022023017
Chicago/Turabian StyleIqbal, Muhammad Mubashir, and Abid Hussain. 2022. "Passive Temperature Excursion of Electronic Devices Using Ionic Wind" Engineering Proceedings 23, no. 1: 17. https://doi.org/10.3390/engproc2022023017
APA StyleIqbal, M. M., & Hussain, A. (2022). Passive Temperature Excursion of Electronic Devices Using Ionic Wind. Engineering Proceedings, 23(1), 17. https://doi.org/10.3390/engproc2022023017