Performance Evaluation of Jute-Fiber-Reinforced Concrete Walls with GFRP Reinforcement for Impact Energy Dissipation †
Abstract
1. Introduction
2. Experimentation
3. Results and Analysis
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, S.-H.; Ji, H.; Chong, J. Experimental–theoretical investigation for damage assessment of a reinforced concrete slab under consecutive explosions based on single-degree-of-freedom model. Int. J. Prot. Struct. 2020, 12, 95–109. [Google Scholar] [CrossRef]
- Del Linz, P.; Fung, T.C.; Lee, C.K.; Riedel, W. Response mechanisms of reinforced concrete panels to the combined effect of close-in blast and fragments: An integrated experimental and numerical analysis. Int. J. Prot. Struct. 2020, 12, 49–72. [Google Scholar] [CrossRef]
- Jing, L.; Liu, K.; Su, X.; Guo, X. Experimental and numerical study of square sandwich panels with layered-gradient foam cores to air-blast loading. Thin-Walled Struct. 2021, 161, 107445. [Google Scholar] [CrossRef]
- Li, Z.-X.; Zhang, X.; Shi, Y.; Wu, C.; Li, J. Finite element modeling of FRP retrofitted RC column against blast loading. Compos. Struct. 2021, 263, 113727. [Google Scholar] [CrossRef]
- Ishchenko, A.; Afanas’eva, S.; Belov, N.; Burkin, V.; Zakharov, V.; Zykova, A.; Sammel, A.Y.; Skosyrskii, A.; Stepanov, E.Y.; Tabachenko, A. A Study of the Protective Properties of a Combined Cermet Material upon a High-Speed Impact. Tech. Phys. 2020, 65, 925–934. [Google Scholar] [CrossRef]
- Zhang, W.; Di, B.; Song, D. Research Progress of Anti-Penetration Yaw Technology for Concrete Protective Structures. IOP Conf. Ser. Mater. Sci. Eng. 2020, 768, 032017. [Google Scholar] [CrossRef]
- Grisaro, H.Y.; Edri, I.E.; Rigby, S.E. TNT equivalency analysis of specific impulse distribution from close-in detonations. Int. J. Prot. Struct. 2020, 12, 315–330. [Google Scholar] [CrossRef]
- Costa, E. Implementation of an empirical tool for fast prediction of bomb airblast loading. Int. J. Prot. Struct. 2018, 10, 54–72. [Google Scholar] [CrossRef]
- Yao, W.; Sun, W.; Shi, Z.; Chen, B.; Chen, L.; Feng, J. Blast-resistant performance of hybrid fiber-reinforced concrete (HFRC) panels subjected to contact detonation. Appl. Sci. 2019, 10, 241. [Google Scholar] [CrossRef]
- Li, P.; Brouwers, H.; Yu, Q. Influence of key design parameters of ultra-high performance fibre reinforced concrete on in-service bullet resistance. Int. J. Impact Eng. 2019, 136, 103434. [Google Scholar] [CrossRef]
- Yao, Y.; Silva, F.A.; Butler, M.; Mechtcherine, V.; Mobasher, B. Tensile and Flexural Behavior of Ultra-High-Performance Concrete (UHPC) under Impact Loading. Int. J. Impact Eng. 2021, 153, 103866. [Google Scholar] [CrossRef]
- Sadraie, H.; Khaloo, A.; Soltani, H. Dynamic performance of concrete slabs reinforced with steel and GFRP bars under impact loading. Eng. Struct. 2019, 191, 62–81. [Google Scholar] [CrossRef]
- Hussain, T.; Ali, M. Improving the impact resistance and dynamic properties of jute-fiber-reinforced concrete for rebars design by considering tension zone of FRC. Constr. Build. Mater. 2019, 213, 592–607. [Google Scholar] [CrossRef]
- Huang, H.; Gao, X.; Khayat, K.H. Contribution of fiber orientation to enhancing dynamic properties of UHPC under impact loading. Cem. Concr. Compos. 2021, 121, 104108. [Google Scholar] [CrossRef]
- Li, R.; Zhou, D.; Wu, H. Experimental and numerical study on impact resistance of RC bridge piers under lateral impact loading. Eng. Fail. Anal. 2019, 109, 104319. [Google Scholar] [CrossRef]
- Ahmed, N.; Xue, P. Determination of the size of the local region for efficient global/local modeling in a large composite structure under impact loading. Int. J. Impact Eng. 2020, 144, 103646. [Google Scholar] [CrossRef]
- Sheikh, S.A.; Kharal, Z. Replacement of steel with GFRP for sustainable reinforced concrete. Constr. Build. Mater. 2018, 160, 767–774. [Google Scholar] [CrossRef]
- Pham, T.M.; Hao, H. Axial impact resistance of FRP-confined concrete. J. Compos. Constr. 2017, 21, 04016088. [Google Scholar] [CrossRef]
- Mahmood, A.; Noman, M.T.; Pechočiaková, M.; Amor, N.; Petrů, M.; Abdelkader, M.; Militký, J.; Sozcu, S.; Hassan, S.Z.U. Geopolymers and Fiber-Reinforced Concrete Composites in Civil Engineering. Polymers 2021, 13, 2099. [Google Scholar] [CrossRef]
- Mohamed, S.; Zainudin, E.; Sapuan, S.; Azaman, M.; Arifin, A. Energy behavior assessment of rice husk fibres reinforced polymer composite. J. Mater. Res. Technol. 2019, 9, 383–393. [Google Scholar] [CrossRef]
- Ali, M.; Liu, A.; Sou, H.; Chouw, N. Effect of Fibre Content on Dynamic Properties of Coir Fibre Reinforced Concrete Beams. In Proceedings of the NZSEE Conference, New Zealand, 6 March 2010; Annual Australian Earthquake Engineering Society (AEES): Newcastle, Australia, 2010; pp. 1–8. [Google Scholar]
- Ali, M.; Chouw, N. Coir fibre and rope reinforced concrete beams under dynamic loading. In Proceedings of the Annual Australian Earthquake Engineering Society Conference, Newcastle Earthquake–20 Years on, Newcastle, Australia, 11–13 December 2009. [Google Scholar]
- Luo, G.; Li, X.; Zhou, Y.; Sui, L.; Chen, C. Replacing steel stirrups with natural-fiber-reinforced polymer stirrups in reinforced concrete Beam: Structural and environmental performance. Constr. Build. Mater. 2021, 275, 122172. [Google Scholar] [CrossRef]
- De Klerk, M.; Kayondo, M.; Moelich, G.; de Villiers, W.; Combrinck, R.; Boshoff, W. Durability of chemically modified sisal fibre in cement-based composites. Constr. Build. Mater. 2020, 241, 117835. [Google Scholar] [CrossRef]
- Sivaraja, M.; Velmani, N.; Pillai, M.S. Study on durability of natural fibre concrete composites using mechanical strength and microstructural properties. Bull. Mater. Sci. 2010, 33, 719–729. [Google Scholar] [CrossRef]
- Lima, H.C.; Willrich, F.L.; Barbosa, N.P.; Rosa, M.A.; Cunha, B.S. Durability analysis of bamboo as concrete reinforcement. Mater. Struct. 2007, 41, 981–989. [Google Scholar] [CrossRef]
- John, V.M.; Cincotto, M.A.; Sjöström, C.; Agopyan, V.; Oliveira, C.T. Durability of slag mortar reinforced with coconut fibre. Cem. Concr. Compos. 2005, 27, 565–574. [Google Scholar] [CrossRef]
- Zhang, T.; Yin, Y.; Gong, Y.; Wang, L. Mechanical properties of jute fiber-reinforced high-strength concrete. Struct. Concr. 2020, 21, 703–712. [Google Scholar] [CrossRef]
- Zakaria, M.; Ahmed, M.; Hoque, M.M.; Islam, S. Scope of using jute fiber for the reinforcement of concrete material. Text. Cloth. Sustain. 2017, 2, 11. [Google Scholar] [CrossRef]
- C143. Standard Test Method for Slump of Hydraulic-Cement Concrete; ASTM International: West Conshohocken, PA, USA, 2012.
- C215-14. Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Resonant Frequencies of Concrete Specimens; ASTM International: West Conshohocken, PA, USA, 2014.
Property | Strength | Damping | ||
---|---|---|---|---|
PC | JFRC | PC | JFRC | |
Flexural | 4.2 MPa | 2.3 MPa | 2.8% | 3.5% |
Compressive | 13.1 MPa | 11.3 MPa | 4.7% | 6.2% |
Split-tensile | 8.7 MPa | 5.9 MPa |
Parameters | GFRP Reinforced PC | GFRP Reinforced JFRC |
---|---|---|
Damping (%) | 12.4 | 14.2 |
Impact Strength (Strikes) | 53 | 128 |
Damaged Specimen |
Accl. | GFRP-Reinforced PC | Difference | GFRP-Reinforced JFRC | Difference | Remarks | ||
---|---|---|---|---|---|---|---|
First Strike | Last Strike | First Strike | Last Strike | ||||
ü—1 | 1.53 g | 1.40 g | - | 0.92 g | 0.74 g | - | Induced force |
ü—2 | 0.33 g | 0.41 g | +24.2% | 1.80 g | 2.27 g | +26.1% | Energy dissipated |
ü—3 | 0.32 g | 0.32 g | 0% | 2.52 g | 2.68 g | +6% | Energy dissipated |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, S.; Ali, M. Performance Evaluation of Jute-Fiber-Reinforced Concrete Walls with GFRP Reinforcement for Impact Energy Dissipation. Eng. Proc. 2022, 22, 21. https://doi.org/10.3390/engproc2022022021
Ahmed S, Ali M. Performance Evaluation of Jute-Fiber-Reinforced Concrete Walls with GFRP Reinforcement for Impact Energy Dissipation. Engineering Proceedings. 2022; 22(1):21. https://doi.org/10.3390/engproc2022022021
Chicago/Turabian StyleAhmed, Shehryar, and Majid Ali. 2022. "Performance Evaluation of Jute-Fiber-Reinforced Concrete Walls with GFRP Reinforcement for Impact Energy Dissipation" Engineering Proceedings 22, no. 1: 21. https://doi.org/10.3390/engproc2022022021
APA StyleAhmed, S., & Ali, M. (2022). Performance Evaluation of Jute-Fiber-Reinforced Concrete Walls with GFRP Reinforcement for Impact Energy Dissipation. Engineering Proceedings, 22(1), 21. https://doi.org/10.3390/engproc2022022021