Evaluation of Mechanical and Durability Aspects of Self-Compacting Concrete by Using Thermo-Mechanical Activation of Bentonite †
Abstract
:1. Introduction
2. Materials
2.1. Cement and Bentonite
Fine Aggregates and Coarse Aggregates
2.2. Bentonite Activation Techniques Used
2.2.1. Activation of Bentonite through Mechanical Process (Grinding)
2.2.2. Thermal Activation of Bentonite (Heating)
2.3. Mix Proportions
3. Results and Discussion
3.1. Fresh Properties of SCC
Slump Flow
3.2. Mechanical Properties
3.2.1. Compressive Strength
3.2.2. Split Tensile Strength
3.3. Durability Characteristics
3.3.1. Water Absorption Test
3.3.2. Acid Attack
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alberti, M.G.; Enfedaque, A.; Gálvez, J.C. On the mechanical properties and fracture behavior of polyolefin fiber-reinforced self-compacting concrete. Constr. Build. Mater. 2014, 55, 274–288. [Google Scholar] [CrossRef]
- Kim, J.K.; Han, S.H. Mechanical properties of self-flowing concrete. High-performance concrete: Design and materials and recent advances in concrete technology. In Proceedings of the Third CANMET/ACI International Conference, Auckland, New Zealand, 24–27 August 1997. [Google Scholar]
- Akram, T.; Memon, S.A.; Obaid, H. Production of low cost self compacting concrete using bagasse ash. Constr. Build. Mater. 2009, 23, 703–712. [Google Scholar] [CrossRef]
- 4 Şahmaran, M.; Yaman, İ.Ö.; Tokyay, M. Transport and mechanical properties of self consolidating concrete with high volume fly ash. Cem. Concr. Compos. 2009, 31, 99–106. [Google Scholar] [CrossRef]
- Sharma, R.; Khan, R.A. Influence of copper slag and metakaolin on the durability of self compacting concrete. J. Clean. Prod. 2018, 171, 1171–1186. [Google Scholar] [CrossRef]
- Barı¸s, K.; Tanaçan, L. Durability of steam cured pozzolanic mortars at atmospheric pressure. In Calcined Clays for Sustainable Concrete; Springer: Dordrecht, The Netherlands, 2018; Volume 16, pp. 46–53. [Google Scholar]
- Vizcayno, C.; De Gutierrez, R.M.; Castelló, R.; Rodríguez, E.; Guerrero, C.E. Pozzolan obtained by mechanochemical and thermal treatments of kaolin. Appl. Clay Sci. 2010, 49, 405–413. [Google Scholar] [CrossRef]
- Bassuoni, M.T.; Nehdi, M.; Amin, M. Self-compacting concrete: Using limestone to resist sulfuric acid. Proc. Inst. Civ. Eng.-Constr. Mater. 2007, 160, 113–123. [Google Scholar] [CrossRef]
- Fabbri, B.; Gualtieri, S.; Leonardi, C. Modifications induced by the thermal treatment of kaolin and determination of reactivity of metakaolin. Appl. Clay Sci. 2013, 73, 2–10. [Google Scholar] [CrossRef]
- Darweesh, H.H.M.; Nagieb, Z.A. Hydration of Calcined Bentonite Portland Blended Cement Pastes; Council of Scientific and Industrial Research (CSIR): New Delhi, India, 2007; Volume 14, pp. 301–307. [Google Scholar]
- Greenberg, S. Reaction between silica and calcium hydroxide solutions. I. Kinetics in the temperature range 30 to 85°. J. Phys. Chem. 1961, 65, 12–16. [Google Scholar] [CrossRef]
- Musarrat, M.A.; Ullah, S.; Khan, S.H.; Ullah, K. Effect of bentonite on fresh and hardened property of self compacting concrete. Sarhad Univ. Int. J. Basic Appl. Sci. 2017, 4, 54–61. [Google Scholar]
- ASTM C150/C150M-12; Standard Specification for Portland Cement. ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM C618-17a; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2019.
- Laidani, Z.E.A.; Benabed, B.; Abousnina, R.; Gueddouda, M.K.; Kadri, E.H. Experimental investigation on effects of calcined bentonite on fresh, strength and durability properties of sustainable self-compacting concrete. Constr. Build. Mater. 2020, 230, 117062. [Google Scholar] [CrossRef]
- Ahmad, S.; Barbhuiya, S.A.; Elahi, A.; Iqbal, J. Effect of Pakistani bentonite on properties of mortar and concrete. Clay Miner. 2011, 46, 85–92. [Google Scholar] [CrossRef]
- He, C.; Makovicky, E.; Osbaeck, B. Thermal treatment and pozzolanic activity of Na-and Ca-montmorillonite. Appl. Clay Sci. 1996, 10, 351–368. [Google Scholar] [CrossRef]
- Naseer, A.; Jabbar, A.; Khan, A.N.; Ali, Q.; Hussain, Z.; Mirza, J. Performance of Pakistani volcanic ashes in mortars and concrete. Can. J. Civ. Eng. 2008, 35, 1435–1445. [Google Scholar] [CrossRef]
- Pierkes, R.; Schulze, S.E.; Rickert, J. Durability of concretes made with calcined clay composite cements. In Calcined Clays for Sustainable Concrete; Martirena, F., Favier, A., Scrivener, K., Eds.; Springer: Dordrecht, The Netherlands, 2018; Volume 16, pp. 366–371. [Google Scholar] [CrossRef]
- Rehman, S.U.; Yaqub, M.; Noman, M.; Ali, B.; Ayaz Khan, M.N.; Fahad, M.; Abid, M.M.; Gul, A. The influence of thermo-mechanical activation of bentonite on the mechanical and durability performance of concrete. Appl. Sci. 2019, 9, 5549. [Google Scholar] [CrossRef] [Green Version]
Mix Description | W/Binder | Water Used (kg/m3) | Cement (kg/m3) | Bentonite (kg/m3) | Fine AGG (kg/m3) | Coarse AGG (kg/m3) | SP-(%) |
---|---|---|---|---|---|---|---|
5B-TMA | 0.40 | 201.30 | 446.11 | 23.48 | 906.22 | 802.14 | 0.8 |
10B-TMA | 422.63 | 0.8 | |||||
15B-TMA | 399.15 | 70.44 | 0.9 | ||||
20B-TMA | 375.67 | 93.92 | 0.9 | ||||
25B-TMA | 352.19 | 117.4 | 1.1 | ||||
5B-MA | 0.40 | 201.30 | 446.11 | 23.48 | 906.22 | 802.14 | 0.8 |
10B-MA | 422.63 | 0.8 | |||||
15B-MA | 399.15 | 70.44 | 0.9 | ||||
20B-MA | 375.67 | 93.92 | 0.9 | ||||
25B-MA | 352.19 | 117.4 | 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habib, M.; Saad, M.; Abbas, N. Evaluation of Mechanical and Durability Aspects of Self-Compacting Concrete by Using Thermo-Mechanical Activation of Bentonite. Eng. Proc. 2022, 22, 17. https://doi.org/10.3390/engproc2022022017
Habib M, Saad M, Abbas N. Evaluation of Mechanical and Durability Aspects of Self-Compacting Concrete by Using Thermo-Mechanical Activation of Bentonite. Engineering Proceedings. 2022; 22(1):17. https://doi.org/10.3390/engproc2022022017
Chicago/Turabian StyleHabib, Mudassar, Muhammad Saad, and Nadeem Abbas. 2022. "Evaluation of Mechanical and Durability Aspects of Self-Compacting Concrete by Using Thermo-Mechanical Activation of Bentonite" Engineering Proceedings 22, no. 1: 17. https://doi.org/10.3390/engproc2022022017
APA StyleHabib, M., Saad, M., & Abbas, N. (2022). Evaluation of Mechanical and Durability Aspects of Self-Compacting Concrete by Using Thermo-Mechanical Activation of Bentonite. Engineering Proceedings, 22(1), 17. https://doi.org/10.3390/engproc2022022017