Support Vector Machine-Based Epileptic Seizure Detection Using EEG Signals †
Abstract
:1. Introduction
2. Literature Survey
3. Methodology
4. Results
5. Conclusions and Future Scope
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akyol, K. Stacking ensemble based deep neural networks modeling for effective epileptic seizure detection. Expert Syst. Appl. 2020, 148, 113239. [Google Scholar] [CrossRef]
- World Health Organization. Epilepsy: A Public Health Imperative. World Health Organization. 1970. Available online: https://apps.who.int/iris/handle/10665/325293 (accessed on 17 January 2023).
- Ibrahim, S.; Djemal, R.; Alsuwailem, A. Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis. Biocybern. Biomed. Eng. 2018, 38, 16–26. [Google Scholar] [CrossRef]
- Mert, A.; Akan, A. Seizure onset detection based on frequency domain metric of empirical mode decomposition. Signal Image Video Process. 2018, 12, 1489–1496. [Google Scholar] [CrossRef]
- Mulla, Z.A.; Reddy, S.; Lakshmi, V.V.; Maturi, S.C. Epileptic Seizure Detection System using Single Hidden Layer Extreme Learning Machine (ELM). In Proceedings of the 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 23–25 March 2022. [Google Scholar]
- Jahankhani, P.; Kodogiannis, V.; Revett, K. EEG Signal Classification Using Wavelet Feature Extraction and Neural Networks. In Proceedings of the IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA’06), Sofia, Bulgaria, 3–6 October 2006; pp. 120–124. [Google Scholar] [CrossRef]
- Riaz, F.; Hassan, A.; Rehman, S.; Niazi, I.K.; Dremstrup, K. EMD-based temporal and spectral features for the classification of EEG signals using supervised learning. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Padhmashree, V.; Bhattacharyya, A. Human emotion recognition based on time-frequency analysis of multivariate EEG signal. Knowl.-Based Syst. 2022, 238, 107867. [Google Scholar]
- Tajmirriahi, M.; Amini, Z. Modeling of seizure and seizure-free EEG signals based on stochastic differential equations. Chaos Solitons Fractals 2021, 150, 111104. [Google Scholar] [CrossRef]
- Lian, J.; Shi, Y.; Zhang, Y.; Jia, W.; Fan, X.; Zheng, Y. Revealing false positive features in epileptic EEG identification. Int. J. Neural Syst. 2020, 30, 2050017. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Pachori, R.B. Epileptic seizure identification using entropy of FBSE based EEG rhythms. Biomed. Signal Process. Control 2019, 53, 101569. [Google Scholar] [CrossRef]
- Kumar, N.; Alam, K.; Siddiqi, A.H. Wavelet Transform for Classification Of EEG Signal Using SVM and ANN. Biomed. Pharmacol. J. 2017, 10, 2061–2069. [Google Scholar] [CrossRef]
- Zhou, D.; Li, X. Epilepsy EEG signal classification algorithm based on improved RBF. Front. Neurosci. 2020, 14, 606. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Y.; Liu, D.; Wang, Y.; Wang, Z. Automated recognition of epilepsy from EEG signals using a combining space–time algorithm of CNN-LSTM. Sci. Rep. 2023, 13, 14876. [Google Scholar] [CrossRef]
Dataset | Accuracy | Sensitivity | Specificity |
---|---|---|---|
A and E | 100 | 100 | 100 |
AB and E | 99.3 | 98 | 100 |
ABC and E | 99 | 97 | 99 |
ABCD and E | 97 | 94 | 97.5 |
Average | 98.8 | 97.2 | 99.1 |
Features | ||||||||
---|---|---|---|---|---|---|---|---|
Dataset | Metrics | MAV | SD | VAR | MAV + SD | SD + VAR | MAV + SD + VAR | All Features |
A and E | Accuracy | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Sensitivity | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
Specificity | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
AB and E | Accuracy | 99.3 | 99.3 | 97.3 | 99.3 | 99.3 | 99.3 | 99.3 |
Sensitivity | 98 | 98 | 97.7 | 98 | 98 | 98 | 98 | |
Specificity | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
ABC and E | Accuracy | 98.5 | 98.5 | 97.5 | 99 | 99 | 99 | 98.5 |
Sensitivity | 95 | 95 | 91 | 97 | 97 | 97 | 97 | |
Specificity | 99.6 | 99.6 | 99.6 | 99.6 | 99.6 | 99.6 | 99 | |
ABCD and E | Accuracy | 96.8 | 96.6 | 95.8 | 96.8 | 96.6 | 96.8 | 97 |
Sensitivity | 93 | 93 | 84 | 94 | 93 | 94 | 94 | |
Specificity | 97.75 | 97.75 | 97.5 | 98.75 | 97.5 | 97.5 | 97.5 |
Authors | Methodology | Classifications | Accuracy–Sensitivity–Specificity |
---|---|---|---|
Mert et al., 2018 [4] | Empirical decomposition, PSD | A-E AB-E | 100-95.7-97.9 78.3-76.7-83.7 |
Gupta et al., 2019 [11] | ML, SVM, Fourier Bessel exp. | A-E ABCDE | 99.5-NA-NA 98.5-NA-NA |
Zhou et al., 2020 [13] | Wave coeff., KNN + SVM, CNN | A-E | 95.1-96.5-96.3 |
Lian et al., 2020 [10] | KNN + SVM | A-E | 99.93-NA-NA |
Liu et al., 2023 [14] | PSD, SVM, KNN | A-E ABCD-E | 100-100-100 94-100-98 |
This work | SVM with MAV, SD, VAR | A-E AB-E ABCD-E | 100-100-100 99.3-98-100 97-94-98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Himalyan, S.; Gupta, V. Support Vector Machine-Based Epileptic Seizure Detection Using EEG Signals. Eng. Proc. 2022, 18, 73. https://doi.org/10.3390/ecsa-11-20506
Himalyan S, Gupta V. Support Vector Machine-Based Epileptic Seizure Detection Using EEG Signals. Engineering Proceedings. 2022; 18(1):73. https://doi.org/10.3390/ecsa-11-20506
Chicago/Turabian StyleHimalyan, Sachin, and Vrinda Gupta. 2022. "Support Vector Machine-Based Epileptic Seizure Detection Using EEG Signals" Engineering Proceedings 18, no. 1: 73. https://doi.org/10.3390/ecsa-11-20506
APA StyleHimalyan, S., & Gupta, V. (2022). Support Vector Machine-Based Epileptic Seizure Detection Using EEG Signals. Engineering Proceedings, 18(1), 73. https://doi.org/10.3390/ecsa-11-20506