Study on the Energy Demand of Vehicle Propulsion to Minimize Hydrogen Consumption: A Case Study for an Ultra-Energy Efficient Fuel Cell EV in Predefined Driving Conditions †
Abstract
1. Introduction
2. Vehicle and Rack Overview
3. Vehicle Modeling
3.1. Vehicle Longitudinal Dynamic Model
3.2. Electrical Driveline Model
3.2.1. DC Traction Motors
3.2.2. Motor Controller and DC/DC Converter Models
3.2.3. Fuel Cell Model
4. Experimental Set-Up
5. Results
5.1. Results from Numerical Simulations
5.2. Results from Experimental Test
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Parliament. Greenhouse Gas Emissions by Country and Sector. Available online: https://www.europarl.europa.eu/topics/en/article/20180301STO98928/greenhouse-gas-emissions-by-country-and-sector-infographic (accessed on 16 July 2025).
- European Parliament. CO2 Emissions from Cars: Facts and Figures. Available online: https://www.europarl.europa.eu/topics/en/article/20190313STO31218/co2-emissions-from-cars-facts-and-figures-infographics (accessed on 16 July 2025).
- Dimitrov, E.; Peychev, M.; Tashev, A. Study of the Hydrogen Influence on the Combustion Parameters of Diesel Engine. Int. J. Hydrogen Energy 2025, 123, 219–230. [Google Scholar] [CrossRef]
- Xie, F.; Liang, Z.; Cui, B.; Guo, W.; Li, X.; Jiang, B.; Jin, Z. Spray-to-Combustion Interaction in Hydrogen Direct Injection Engines: Effects of Injector Structure and Injection Pressure. Energy 2025, 333, 137514. [Google Scholar] [CrossRef]
- Gao, N.; Geng, Z.; Zhao, W.; Geng, L.; Dong, F.; Huang, D. Review on the Combustion and Emission Characteristics of Hydrogen Engine. Int. J. Hydrogen Energy 2025, 143, 121–146. [Google Scholar] [CrossRef]
- Günaydın, Ö.F.; Topçu, S.; Aksoy, A. Hydrogen Fuel Cell Vehicles: Overview and Current Status of Hydrogen Mobility. Int. J. Hydrogen Energy 2025, 142, 918–936. [Google Scholar] [CrossRef]
- Karaca, A.E.; Dincer, I. Comparative Assessment of Various Passenger Vehicles with Alternative Fuels Including Hydrogen. Sustain. Energy Technol. Assess. 2025, 80, 104386. [Google Scholar] [CrossRef]
- Oladosu, T.L.; Pasupuleti, J.; Kiong, T.S.; Koh, S.P.J.; Yusaf, T. Energy Management Strategies, Control Systems, and Artificial Intelligence-Based Algorithms Development for Hydrogen Fuel Cell-Powered Vehicles: A Review. Int. J. Hydrogen Energy 2024, 61, 1380–1404. [Google Scholar] [CrossRef]
- Li, M.; Yang, D.; Tian, J.; Fan, Y.; Pan, T. An Adaptive Fuzzy Energy Management Strategy for Fuel Cell Hybrid Vehicles Considering Soft Classification for Driving Pattern. Int. J. Hydrogen Energy 2025, 138, 273–285. [Google Scholar] [CrossRef]
- Deng, L.; Radzi, M.A.M.; Shafie, S.; Hassan, M.K. Optimizing Energy Management in Fuel Cell Hybrid Electric Vehicles Using Fuzzy Logic Control with State Machine Approach: Enhancing SOC Stability and Fuel Economy. J. Eng. Res. 2025, 13, 3429–3440. [Google Scholar] [CrossRef]
- Luo, X.; Chung, H.S.H. EMS for Hydrogen Fuel Cell Electric Vehicles Based on Improved Fuzzy Control. Energy Convers. Manag. X 2025, 27, 101093. [Google Scholar] [CrossRef]
- Ma, Y.; Qi, B.; Wang, S.; Ma, Q.; Sui, Z.; Gao, J. Real-Time Energy Management of Fuel Cell Hybrid Electric Vehicle Based on Variable Horizon Velocity Prediction Considering Power Source Durability. Energy 2025, 315, 134359. [Google Scholar] [CrossRef]
- Pavlov, N.; Gigov, B.; Stefanova-Pavlova, M.; Dimitrova, Z. Adaptive Predictive Energy Management Strategy Example for Electric Vehicle Long Distance Trip. In Systems, Software and Services Process Improvement; Yilmaz, M., Niemann, J., Clarke, P., Messnarz, R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 76–91. [Google Scholar]
- Pusztai, Z.; Kőrös, P.; Szauter, F.; Friedler, F. Vehicle Model-Based Driving Strategy Optimization for Lightweight Vehicle. Energies 2022, 15, 3631. [Google Scholar] [CrossRef]
- Stabile, P.; Ballo, F.; Mastinu, G.; Gobbi, M. An Ultra-Efficient Lightweight Electric Vehicle—Power Demand Analysis to Enable Lightweight Construction. Energies 2021, 14, 766. [Google Scholar] [CrossRef]
- Olivier, J.C.; Wasselynck, G.; Chevalier, S.; Auvity, B.; Josset, C.; Trichet, D.; Squadrito, G.; Bernard, N. Multiphysics Modeling and Optimization of the Driving Strategy of a Light Duty Fuel Cell Vehicle. Int. J. Hydrogen Energy 2017, 42, 26943–26955. [Google Scholar] [CrossRef]
- Dobrev, I.; Massouh, F.; Danlos, A.; Todorov, M.; Punov, P. Experimental and Numerical Study of the Flow Field around a Small Car. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2017; Volume 133. [Google Scholar]











| Vehicle | mv, kg | Δm, kg | rroll | f0 | k | Sv, m2 | Cx | ηdrive | Idrive |
|---|---|---|---|---|---|---|---|---|---|
| Phoenix 2023 Urban Concept | 170/178 | 10.05 | 0.275 | 0.004 | 6 × 10−6 | 0.795 | 0.136 | 0.95 | 10/10.53 |
| Type | PN, W | UN, V | IN, A | MN, Nm | nN, rpm | kn, rpm/V | km, Nm/A | I0, A | ηmax |
|---|---|---|---|---|---|---|---|---|---|
| Maxon RE 65 | 250 | 48 | 6.8 | 800 × 10−3 | 3420 | 77.8 | 123.10−3 | 0.289 | 0.88 |
| Type | Cell Number | Rated Power, kW | Rated Current, A | Nominal Voltage, V | Operating Pressure, Bar | Composition | Max. Stack Temperature, °C | Weight, kg |
|---|---|---|---|---|---|---|---|---|
| PEM | 50 | 1 | 33 | 48 | 0.5 | 99.99% H2 | 65 | 6.8 |
| Case | Accelerations | Motors | Gear Ratio | Imot, A | Vehicle Weight, kg | ηdrive, % |
|---|---|---|---|---|---|---|
| Case 1 | 3 | 2 × 250 W—48 V | 10 | 7 | 178 | 95 |
| Case 2 | 2 | 2 × 250 W—48 V | 10 | 7 | 170 | 95 |
| Case 3 | 2 | 2 × 250 W—48 V | 10.53 | 7 | 170 | 95 |
| Hydrogen Consumption [ln/lap] | |||
|---|---|---|---|
| Case 1 | Case 2 | Case 3 | |
| Simulation | 8.54 | 7.95 | 7.99 |
| Experiment | 8.38 | 8.68 | 8.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Osman, O.; Punov, P.; Rusanov, R. Study on the Energy Demand of Vehicle Propulsion to Minimize Hydrogen Consumption: A Case Study for an Ultra-Energy Efficient Fuel Cell EV in Predefined Driving Conditions. Eng. Proc. 2026, 121, 4. https://doi.org/10.3390/engproc2025121004
Osman O, Punov P, Rusanov R. Study on the Energy Demand of Vehicle Propulsion to Minimize Hydrogen Consumption: A Case Study for an Ultra-Energy Efficient Fuel Cell EV in Predefined Driving Conditions. Engineering Proceedings. 2026; 121(1):4. https://doi.org/10.3390/engproc2025121004
Chicago/Turabian StyleOsman, Osman, Plamen Punov, and Rosen Rusanov. 2026. "Study on the Energy Demand of Vehicle Propulsion to Minimize Hydrogen Consumption: A Case Study for an Ultra-Energy Efficient Fuel Cell EV in Predefined Driving Conditions" Engineering Proceedings 121, no. 1: 4. https://doi.org/10.3390/engproc2025121004
APA StyleOsman, O., Punov, P., & Rusanov, R. (2026). Study on the Energy Demand of Vehicle Propulsion to Minimize Hydrogen Consumption: A Case Study for an Ultra-Energy Efficient Fuel Cell EV in Predefined Driving Conditions. Engineering Proceedings, 121(1), 4. https://doi.org/10.3390/engproc2025121004

