Synchronization of High-Resolution Imageries Acquired by NOAA and SUOMI NFP Satellites for Active Fire Detection over Etna Volcano †
Abstract
1. Introduction
2. Study Area
3. Satellite Sensors: S-NPP and NOAA-20
4. Experiments and Results
5. Conclusions and Future Insights
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malaguti, A.B.; Corradino, C.; La Spina, A.; Branca, S.; Del Negro, C. Machine Learning Insights into the Last 400 Years of Etna Lateral Eruptions from Historical Volcanological Data. Geosciences 2024, 14, 295. [Google Scholar] [CrossRef]
- Amato, E.; Corradino, C.; Torrisi, F.; Del Negro, C. A Deep Convolutional Neural Network for Detecting Volcanic Thermal Anomalies from Satellite Images. Remote Sens. 2023, 15, 3718. [Google Scholar] [CrossRef]
- Pailot-Bonnétat, S.; Rafflin, V.; Harris, A.; Diliberto, L.S.; Ganci, G.; Bilotta, G.; Cappello, A.; Boudoire, G.; Grassa, F.; Gattuso, A.; et al. Anatomy of thermal unrest at a hydrothermal system: Case study of the 2021–2022 crisis at Vulcano. Earth Planets Space 2023, 75, 159. [Google Scholar] [CrossRef]
- Di Martino, R.M.R.; Capasso, G.; Camarda, M. Spatial domain analysis of carbon dioxide from soils on Vulcano Island: Implications for CO2 output evaluation. Chem. Geol. 2016, 444, 59–70. [Google Scholar] [CrossRef]
- Ganci, G.; Bilotta, G.; Zuccarello, F.; Calvari, S.; Cappello, A.A. Multi-Sensor Satellite Approach to Characterize the Volcanic Deposits Emitted during Etna’s Lava Fountaining: The 2020–2022 Study Case. Remote Sens. 2023, 15, 916. [Google Scholar] [CrossRef]
- Corradino, C.; Ganci, G.; Cappello, A.; Bilotta, G.; Calvari, S.; Del Negro, C. Recognizing Eruptions of Mount Etna through Machine Learning Using Multiperspective Infrared Images. Remote Sens. 2020, 12, 970. [Google Scholar] [CrossRef]
- Justice, C.O.; Román, M.O.; Csiszar, I.; Vermote, E.F.; Wolfe, R.E.; Hook, S.J.; Friedl, M.; Wang, Z.; Schaaf, C.B.; Miura, T.; et al. Land and cryosphere products from Suomi NPP VIIRS: Overview and status. J. Geophys. Res. Atmos. 2013, 118, 9753–9765. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, W.; Oliva, P.; Giglio, L.; Quayle, B.; Lorenz, E.; Morelli, F. Active fire detection using Landsat-8/OLI data. Remote Sens. Environ. 2016, 185, 210–220. [Google Scholar] [CrossRef]
- Blackett, M. An Overview of Infrared Remote Sensing of Volcanic Activity. J. Imaging 2017, 3, 13. [Google Scholar] [CrossRef]
- Cariello, S.; Malaguti, A.B.; Corradino, C.; Del Negro, C. V-STAR: A Cloud-Based Tool for Satellite Detection and Mapping of Volcanic Thermal Anomalies. GeoHazards 2025, 6, 24. [Google Scholar] [CrossRef]
- Coppola, D.; Aveni, S.; Campus, A.; Laiolo, M.; Massimetti, F.; Bernard, B. Rapid Response to Effusive Eruptions Using Satellite Infrared Data: The March 2024 Eruption of Fernandina (Galápagos). Remote Sens. 2025, 17, 1191. [Google Scholar] [CrossRef]
- Hallabia, H. A Graph-Based Superpixel Segmentation Approach Applied to Pansharpening. Sensors 2025, 25, 4992. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, G.S.; Corradino, C.; Cariello, S.; Torrisi, F.; Del Negro, C. Advancing Volcanic Activity Monitoring: A Near-Real-Time Approach with Remote Sensing Data Fusion for Radiative Power Estimation. Remote Sens. 2024, 16, 2879. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, C.; Vivone, G.; Hong, D. SeaMo: A season-aware multimodal foundation model for remote sensing. Inf. Fusion 2026, 125, 103334. [Google Scholar] [CrossRef]
- Mazza, A.; Guarino, G.; Scarpa, G.; Yuan, Q.; Vivone, G. PM2.5 Retrieval With Sentinel-5P Data Over Europe Exploiting Deep Learning. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5510717. [Google Scholar] [CrossRef]





| Product Latency (Hours) | 1–4 | 1–4 |
|---|---|---|
| Sensor | VIIRS (M-bands) | VIIRS (I-bands) |
| Satellite | SNPP NOAA-20 | SNPP NOAA-20 |
| Equator Crossing time | 13.30 LT 12.40 LT | 13.30 LT 12.40 LT |
| Global coverage | Every 12 h | Every 12 h |
| Spectral region | MIR, TIR | MIR, TIR |
| Pixel resolution at nadir | 0.75 km | 0.375 km |
| Spectral range (µm) | 3.973–4.128 10.26–11.26 | 3.550–3.930 10.56–12.43 |
| ID bands (s) | M-13 M-15 | I-4 I-5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hallabia, H. Synchronization of High-Resolution Imageries Acquired by NOAA and SUOMI NFP Satellites for Active Fire Detection over Etna Volcano. Eng. Proc. 2025, 118, 93. https://doi.org/10.3390/ECSA-12-26503
Hallabia H. Synchronization of High-Resolution Imageries Acquired by NOAA and SUOMI NFP Satellites for Active Fire Detection over Etna Volcano. Engineering Proceedings. 2025; 118(1):93. https://doi.org/10.3390/ECSA-12-26503
Chicago/Turabian StyleHallabia, Hind. 2025. "Synchronization of High-Resolution Imageries Acquired by NOAA and SUOMI NFP Satellites for Active Fire Detection over Etna Volcano" Engineering Proceedings 118, no. 1: 93. https://doi.org/10.3390/ECSA-12-26503
APA StyleHallabia, H. (2025). Synchronization of High-Resolution Imageries Acquired by NOAA and SUOMI NFP Satellites for Active Fire Detection over Etna Volcano. Engineering Proceedings, 118(1), 93. https://doi.org/10.3390/ECSA-12-26503

