Backstepping-Based Trajectory Control for a Three-Rotor UAV: A Nonlinear Approach for Stable and Precise Flight †
Abstract
1. Introduction
2. System Model
- The UAV is a rigid body.
- The aerodynamic drag and gyroscopic effects are neglected.
- The thrust produced by each rotor is proportional to the square of its angular velocity.
- The system operates under small to moderate angular displacements (<30°) to ensure the validity of the control model.
2.1. Definition of States
- x, y, z: the position coordinates of the UAV in space.
- ϕ: the roll angle, representing the inclination of the UAV along the longitudinal axis.
- θ: the pitch angle, representing the inclination along the lateral axis.
- ψ: the yaw angle, representing the heading.
2.2. Translational Dynamics
2.3. Rotational Dynamics
2.4. State Vector and Control Inputs
3. Control System
3.1. Vertical Position Control
3.2. Position and Attitude Control Laws
4. Results and Discussion
4.1. Scenario 1: Circular Trajectory
4.2. Second Scenario: Lemniscate Trajectory
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, G.; Yu, L.; Huang, H.; Wang, X. A Nonlinear Robust Sliding Mode Controller with Auxiliary Dynamic System for the Hovering Flight of a Tilt Tri-Rotor UAV. Appl. Sci. 2020, 10, 6551. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, J.; Wang, N.; Shen, L.; Li, Y. Conversion control of a tilt tri-rotor unmanned aerial vehicle with modeling uncertainty. Int. J. Adv. Robot. Syst. 2021, 18, 172988142110270. [Google Scholar] [CrossRef]
- Yahia, A.M.; Alkamachi, A. Design, Modeling, and Control of Tiltable Tri-Rotors UAV. J. Eur. Des Systèmes Autom. 2024, 57, 841–848. [Google Scholar] [CrossRef]
- Shen, Z.; Liu, F. Design and Implementation of a Novel Tilt-Rotor Tri-Copter UAV Configuration. Eng. Proc. 2025, 80, 39. [Google Scholar] [CrossRef]
- González, H.; Arizmendi, C.; Valencia, C.; Valle, D.; Bernal, B.; Vera, A. Modelling and Control System Design for UAV Tri-Rotor. In Proceedings of the International Conference on Advanced Engineering Theory and Applications, Bogota, Colombia, 6–8 November 2019; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Panigrahi, S.; Krishna, Y.S.S.; Thondiyath, A. Design, Analysis, and Testing of a Hybrid VTOL Tilt-Rotor UAV for Increased Endurance. Sensors 2021, 21, 5987. [Google Scholar] [CrossRef] [PubMed]
- Wen, G.; Wu, D.; Yin, H.; Zhang, D. Coupled CFD/MBD Method for a Tilt Tri-rotor UAV in Conversion of Flight Modes. Int. J. Comput. Fluid Dyn. 2020, 34, 363–379. [Google Scholar] [CrossRef]
- Sababha, B.H.; Al Zu’bi, H.M.; Rawashdeh, O.A. A rotor-tilt-free tricopter UAV: Design, modelling, and stability control. Int. J. Mechatron. Autom. 2015, 5, 107–113. [Google Scholar] [CrossRef]
- Mousaei, M.; Geng, J.; Keipour, A.; Bai, D.; Scherer, S. Design, Modeling and Control for a Tilt-rotor VTOL UAV in the Presence of Actuator Failure. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; pp. 4310–4317. [Google Scholar] [CrossRef]
- Arco, A.; Vale, J.L.D.; Bazzocchi, S.; Suleman, A. Investigation on the Airworthiness of a Novel Tri-Rotor Configuration for a Fixed Wing VTOL Aircraft. Int. J. Aviat. Sci. Technol. 2023, 4, 53–62. [Google Scholar] [CrossRef]
- Liang, Z.; Fan, L.; Wen, G.; Xu, Z. Design, Modeling, and Control of a Composite Tilt-Rotor Unmanned Aerial Vehicle. Drones 2024, 8, 102. [Google Scholar] [CrossRef]
- Alam, A.S.; Kusumadjati, A.; Oktaviana, A.T. Preliminary study of dynamic modeling based on quaternion analysis for tricopter drone. Int. J. Appl. Math. Sci. Technol. Natl. Déf. 2024, 2, 145–152. [Google Scholar] [CrossRef]
- Xian, B.; Hao, W. Nonlinear Robust Fault-Tolerant Control of the Tilt Trirotor UAV Under Rear Servo’s Stuck Fault: Theory and Experiments. IEEE Trans. Ind. Inform. 2018, 15, 2158–2166. [Google Scholar] [CrossRef]
- Kastelan, D.; Konz, M.; Rudolph, J. Fully Actuated Tricopter with Pilot-Supporting Control. IFAC-PapersOnLine 2015, 48, 79–84. [Google Scholar] [CrossRef]
- Tuyet Nhung, L.T.; Dinh Quy, V.; Hung, N.Q.; Xuan Tung, P. Sliding Mode Control for the hovering flight of a Tilt tri-rotor UAV. In Proceedings of the 2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS), Hanoi, Vietnam, 21–24 November 2022; pp. 448–454. [Google Scholar] [CrossRef]
- Salwa, M.; Krzysztofik, I. Optimal Control for a Three-Rotor Unmanned Aerial Vehicle in Programmed Flights. Appl. Sci. 2023, 13, 13118. [Google Scholar] [CrossRef]
- Lei, C.; Zhu, Q. Robust backstepping stabilization of uncertain Cartpole underactuated systems with full state constraints: A strict-feedback-like system design approach. Eur. J. Control 2025, 85, 101275. [Google Scholar] [CrossRef]
- Ghiloubi, I.B.; Abdou, L.; Lahmar, O.; Drid, A.H. Quadrotor Trajectory Tracking Under Wind Disturbance Using Backstepping Control Based on Different Optimization Techniques. Eng. Proc. 2025, 87, 93. [Google Scholar] [CrossRef]
- Fadlo, S.; Elmahjoub, A.A.; Rabbah, N. Optimal trajectory tracking control for a wheeled mobile robot using backstepping technique. Int. J. Electr. Comput. Eng. (IJECE) 2022, 12, 5979–5987. [Google Scholar] [CrossRef]
- Zhao, W.; Meng, Z.; Wang, K.; Zhang, H. Backstepping Control of an Unmanned Helicopter Subjected to External Disturbance and Model Uncertainty. Appl. Sci. 2021, 11, 5331. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Zhang, Q.; Pei, C. An innovative fuzzy backstepping sliding mode controller for a Tri-Rotor Unmanned Aerial Vehicle. Microsyst. Technol. 2017, 23, 5621–5630. [Google Scholar] [CrossRef]
- Song, Z.; Li, K.; Cai, Z.; Wang, Y.; Liu, N. Modeling and maneuvering control for tricopter based on the back-stepping method. In Proceedings of the 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), Nanjing, China, 12–14 August 2016; pp. 889–894. [Google Scholar]
- Akter, S.; Bhuiyan, S.H. Performance Evaluation of PID and Backstepping Controllers for a Symmetrical Y-shaped Tricopter UAV. In Proceedings of the 2024 27th International Conference on Computer and Information Technology (ICCIT), Cox’s Bazar, Bangladesh, 20–22 December 2024; pp. 2783–2788. [Google Scholar]
- Houari, A.; Bachir, I.; Mohamed, D.K.; Mohamed, M.K. PID vs LQR controller for tilt rotor airplane. Int. J. Electr. Comput. Eng. (IJECE) 2020, 10, 6309–6318. [Google Scholar] [CrossRef]






| Ref. | Approach | Features | Limitations | Novelty |
|---|---|---|---|---|
| [21] | Fuzzy backstepping and sliding mode | Attitude and altitude stabilization; fuzzy logic | Hybrid; no 3D trajectory | - |
| [22] | Maneuvering control via backstepping | Backstepping for maneuvering | Comparative assessment, not Lyapunov trajectory control | - |
| [23] | PID vs backstepping | Comparative study | Simulation only | - |
| This work | Nonlinear backstepping trajectory control | Lyapunov proof; sensor-based; complex trajectories | Simulation only | 1st pure backstepping-based trajectory controller for underactuated three-rotor UAV |
| Control Method | Precision | Rapidity | Overshoot | Tested Trajectory | Limitations |
|---|---|---|---|---|---|
| PID [24] | Moderate | Low | >10% | Simple trajectory | Limited robustness and steady-state error |
| LQR [24] | Good | Moderate | 0% | Simple trajectory | Requires linearization, limited for nonlinear systems |
| Sliding Mode Control [1] | High | Moderate | >3% | Square | Chattering phenomenon |
| Backstepping | High | Fast | 0% | Circle & Lemniscate (complex sharp turns) | Requires a relatively complex design process |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghiloubi, I.B.; Rinaldi, M.; El Fadili, Y.; Gharsa, O. Backstepping-Based Trajectory Control for a Three-Rotor UAV: A Nonlinear Approach for Stable and Precise Flight. Eng. Proc. 2025, 118, 54. https://doi.org/10.3390/ECSA-12-26573
Ghiloubi IB, Rinaldi M, El Fadili Y, Gharsa O. Backstepping-Based Trajectory Control for a Three-Rotor UAV: A Nonlinear Approach for Stable and Precise Flight. Engineering Proceedings. 2025; 118(1):54. https://doi.org/10.3390/ECSA-12-26573
Chicago/Turabian StyleGhiloubi, Imam Barket, Marco Rinaldi, Yattou El Fadili, and Oumaima Gharsa. 2025. "Backstepping-Based Trajectory Control for a Three-Rotor UAV: A Nonlinear Approach for Stable and Precise Flight" Engineering Proceedings 118, no. 1: 54. https://doi.org/10.3390/ECSA-12-26573
APA StyleGhiloubi, I. B., Rinaldi, M., El Fadili, Y., & Gharsa, O. (2025). Backstepping-Based Trajectory Control for a Three-Rotor UAV: A Nonlinear Approach for Stable and Precise Flight. Engineering Proceedings, 118(1), 54. https://doi.org/10.3390/ECSA-12-26573

