Assessing the Environmental Sustainability and Footprint of Industrial Packaging †
Abstract
1. Introduction
2. Analytical Framework and Evaluation of Packaging Material
3. Environmental Assessment of Industrial Packaging
3.1. Life Cycle Assessment for Packaging
3.2. Ecological Footprint and Biocapacity of Packaging Materials
3.3. Carbon Footprint and Environmental Impact
4. Environmental Performance of Industrial Packaging Materials
4.1. Conventional Packaging Materials
4.2. Renewable and Recyclable Fibre-Based Materials
4.3. Emerging Bio-Based and Compostable Alternatives
4.4. Illustrative Case Study: Food Packaging Application
5. Industrial Packaging Value Chain Framework for Packaging
6. Policy and Governance and Future Framework
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pauer, E.; Wohner, B.; Heinrich, V.; Tacker, M. Assessing the Environmental Sustainability of Food Packaging: An Extended Life Cycle Assessment including Packaging-Related Food Losses and Waste and Circularity Assessment. Sustainability 2019, 11, 925. [Google Scholar] [CrossRef]
- Arfelli, F.; Roguszewska, M.; Torta, G.; Iurlo, M.; Cespi, D.; Ciacci, L.; Passarini, F. Environmental impacts of food packaging: Is it all a matter of raw materials? Sustain. Prod. Consum. 2024, 49, 318–328. [Google Scholar] [CrossRef]
- Jagoda, S.; Gamage, J.; Karunathilake, H. Environmentally sustainable plastic food packaging: A holistic life cycle thinking approach for design decisions. J. Clean. Prod. 2023, 400, 136680. [Google Scholar] [CrossRef]
- Frojan, J.; Bisquert, P.; Buche, P.; Gontard, N.; Boone, L.; Thuy, T.N.; Vermeulen, A.; Ragaert, P.; Dewulf, J.; Guillard, V. Scoring methodology for comparing the environmental performance of food packaging. Packag. Technol. Sci. 2023, 36, 439–463. [Google Scholar] [CrossRef]
- Reichert, C.L.; Bugnicourt, E.; Coltelli, M.-B.; Cinelli, P.; Lazzeri, A.; Canesi, I.; Braca, F.; Martínez, B.M.; Alonso, R.; Agostinis, L.; et al. Bio-Based Packaging: Materials, Modifications, Industrial Applications and Sustainability. Polymers 2020, 12, 1558. [Google Scholar] [CrossRef]
- Nejad, B.F.; Smyth, B.; Bolaji, I.; Mehta, N.; Billham, M.; Cunningham, E. Carbon and energy footprints of high-value food trays and lidding films made of common bio-based and conventional packaging materials. Clean. Environ. Syst. 2021, 3, 100058. [Google Scholar] [CrossRef]
- ISO 14040; Environmental management—Life cycle assessment—Principles and framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- Rathore, S.; Schuler, B.; Park, J. Life cycle assessment of multiple dispensing systems used for cosmetic product packaging. Packag. Technol. Sci. 2023, 36, 533–547. [Google Scholar] [CrossRef]
- Arias, A.; Feijoo, G.; Moreira, M.T. Establishing the multi-criteria roadmap and metrics for the evaluation of active films for food packaging. Curr. Res. Green Sustain. Chem. 2021, 4, 100160. [Google Scholar] [CrossRef]
- Thakker, V.; Bakshi, B.R. Ranking Eco-Innovations to Enable a Sustainable Circular Economy with Net-Zero Emissions. ACS Sustain. Chem. Eng. 2023, 11, 1363–1374. [Google Scholar] [CrossRef]
- Barrak, E.; Rodrigues, C.; Antunes, C.H.; Freire, F.; Dias, L.C. Applying multi-criteria decision analysis to combine life cycle assessment with circularity indicators. J. Clean. Prod. 2024, 451, 141872. [Google Scholar] [CrossRef]
- Mudgal, D.; Pagone, E.; Salonitis, K. Selecting sustainable packaging materials and strategies: A holistic approach considering whole life cycle and customer preferences. J. Clean. Prod. 2024, 481, 144133. [Google Scholar] [CrossRef]
- Zambujal-Oliveira, J.; Fernandes, C. The Contribution of Sustainable Packaging to the Circular Food Supply Chain. Packag. Technol. Sci. 2024, 37, 443–456. [Google Scholar] [CrossRef]
- De Laurentiis, V.; Amadei, A.; Sanyé-Mengual, E.; Sala, S. Exploring alternative normalization approaches for life cycle assessment. Int. J. Life Cycle Assess. 2023, 28, 1382–1399. [Google Scholar] [CrossRef]
- Zanghelini, G.M.; Cherubini, E.; Soares, S.R. How Multi-Criteria Decision Analysis (MCDA) is aiding Life Cycle Assessment (LCA) in results interpretation. J. Clean. Prod. 2018, 172, 609–622. [Google Scholar] [CrossRef]
- Ferla, G.; Mura, B.; Falasco, S.; Caputo, P.; Matarazzo, A. Multi-Criteria Decision Analysis (MCDA) for sustainability assessment in food sector. A systematic literature review on methods, indicators and tools. Sci. Total Environ. 2024, 946, 174235. [Google Scholar] [CrossRef]
- Azzini, I.; Munda, G. Sensitivity and Robustness Analyses in Social Multi-Criteria Evaluation of Public Policies. J. Multi-Criteria Decis. Anal. 2025, 32, e70006. [Google Scholar] [CrossRef]
- Sałabun, W.; Wątróbski, J.; Shekhovtsov, A. Are MCDA Methods Benchmarkable? A Comparative Study of TOPSIS, VIKOR, COPRAS, and PROMETHEE II Methods. Symmetry 2020, 12, 1549. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, J.; Rao, P.V.M. Parameters for Environmental Impact Assessment of Product Packaging: A Delphi Study. J. Packag. Technol. Res. 2018, 2, 3–15. [Google Scholar] [CrossRef]
- Šuput, D.; Popović, S.; Ugarković, J.; Hromiš, N. Application of life cycle assessment in the packaging sector for the environmental assessment of polymer and biopolymer based materials: A review. J. Process. Energy Agric. 2022, 26, 75–78. [Google Scholar] [CrossRef]
- Vassallo, N.; Refalo, P. Reducing the Environmental Impacts of Plastic Cosmetic Packaging: A Multi-Attribute Life Cycle Assessment. Cosmetics 2024, 11, 34. [Google Scholar] [CrossRef]
- Bher, A.; Auras, R. Life cycle assessment of packaging systems: A meta-analysis to evaluate the root of consistencies and discrepancies. J. Clean. Prod. 2024, 476, 143785. [Google Scholar] [CrossRef]
- Mousania, Z.; Atkinson, J.D. A cradle-to-grave life cycle assessment of multilayer plastic film food packaging materials, comparing to a paper-based alternative. Waste Manag. 2025, 200, 114747. [Google Scholar] [CrossRef] [PubMed]
- Sazdovski, I.; Bala, A.; Fullana-I.-Palmer, P. Linking LCA literature with circular economy value creation: A review on beverage packaging. Sci. Total Environ. 2021, 771, 145322. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.; Loubet, P.; da Costa, T.P.; Quinteiro, P.; Laso, J.; de Sousa, D.B.; Cooney, R.; Mellett, S.; Sonnemann, G.; Rodríguez, C.J.; et al. Packaging environmental impact on seafood supply chains: A review of life cycle assessment studies. J. Ind. Ecol. 2021, 26, 1961–1978. [Google Scholar] [CrossRef]
- Molina-Besch, K.; Wikström, F.; Williams, H. The environmental impact of packaging in food supply chains—does life cycle assessment of food provide the full picture? Int. J. Life Cycle Assess. 2018, 24, 37–50. [Google Scholar] [CrossRef]
- Anggraini, W. Development of Biodegradable Materials for Consumer Product Packaging: Environmental Impact and Consumer Preferences. J. Pijar Mipa 2025, 20, 304–310. [Google Scholar] [CrossRef]
- Mannheim, V.; Moor, U.; Laumets, L.; Szita, K.T. Evaluating the Energy Resources and Environmental Impacts for Blueberry Packaging Materials with a Focus on End-of-Life Scenarios. Energies 2025, 18, 3232. [Google Scholar] [CrossRef]
- Avery, E.; Nduagu, E.; Vozzola, E.; Roux, T.W.; Auras, R. Polyethylene packaging and alternative materials in the United States: A life cycle assessment. Sci. Total Environ. 2025, 961, 178359. [Google Scholar] [CrossRef]
- Meng, F.; Brandão, M.; Cullen, J.M. Replacing Plastics with Alternatives Is Worse for Greenhouse Gas Emissions in Most Cases. Environ. Sci. Technol. 2024, 58, 2716–2727. [Google Scholar] [CrossRef]
- Krauter, V.; Bauer, A.-S.; Milousi, M.; Dörnyei, K.R.; Ganczewski, G.; Leppik, K.; Krepil, J.; Varzakas, T. Cereal and Confectionary Packaging: Assessment of Sustainability and Environmental Impact with a Special Focus on Greenhouse Gas Emissions. Foods 2022, 11, 1347. [Google Scholar] [CrossRef]
- Otto, S.; Strenger, M.; Maier-Nöth, A.; Schmid, M. Food packaging and sustainability – Consumer perception vs. correlated scientific facts: A review. J. Clean. Prod. 2021, 298, 126733. [Google Scholar] [CrossRef]
- Recanati, F.; Marveggio, D.; Dotelli, G. From beans to bar: A life cycle assessment towards sustainable chocolate supply chain. Sci. Total Environ. 2018, 613–614, 1013–1023. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, A.P.C.; Müller-Carneiro, J.; Pereira, A.L.S.; Rosa, M.d.F.; Mattos, A.L.A.; de Azeredo, H.M.C.; Freire, F.; de Figueirêdo, M.C.B. Ecodesign of bio-based films for food packaging: Challenges and recommendations. Environ. Dev. 2023, 48, 100926. [Google Scholar] [CrossRef]
- Oloyede, O.O.; Lignou, S. Sustainable Paper-Based Packaging: A Consumer’s Perspective. Foods 2021, 10, 1035. [Google Scholar] [CrossRef]
- Boesen, S.; Bey, N.; Niero, M. Environmental sustainability of liquid food packaging: Is there a gap between Danish consumers’ perception and learnings from life cycle assessment? J. Clean. Prod. 2019, 210, 1193–1206. [Google Scholar] [CrossRef]
- Dolci, G.; Puricelli, S.; Cecere, G.; Tua, C.; Fava, F.; Rigamonti, L.; Grosso, M. How does plastic compare with alternative materials in the packaging sector? A systematic review of LCA studies. Waste Manag. Res. J. Sustain. Circ. Econ. 2024, 43, 339–357. [Google Scholar] [CrossRef]
- Mafe, A.N.; Edo, G.I.; Akpoghelie, P.O.; Joshua, O.A.; Isoje, E.F.; Igbuku, U.A.; Essaghah, A.E.A. Comparative Analysis of the Environmental Impact of Biopolymer-Based and Conventional Plastic Packaging in Food Engineering Applications. Al-Mustaqbal J. Sustain. Eng. Sci. 2024, 2, 4. [Google Scholar] [CrossRef]
- Yadav, K.; Nikalje, G.C. Comprehensive analysis of bioplastics: Life cycle assessment, waste management, biodiversity impact, and sustainable mitigation strategies. PeerJ 2024, 12, e18013. [Google Scholar] [CrossRef]
- Choi, B.; Yoo, S.; Park, S.-I. Carbon Footprint of Packaging Films Made from LDPE, PLA, and PLA/PBAT Blends in South Korea. Sustainability 2018, 10, 2369. [Google Scholar] [CrossRef]
- Ncube, L.K.; Ude, A.U.; Ogunmuyiwa, E.N.; Zulkifli, R.; Beas, I.N. Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials. Materials 2020, 13, 4994. [Google Scholar] [CrossRef]
- Vinitskaia, N.; Lindstad, A.J.; Lev, R.; Kvikant, M.; Xu, C.; Leminen, V.; Li, K.D.; Pettersen, M.K.; Grönman, K. Environmental Sustainability, Food Quality and Convertibility of Bio-Based Barrier Coatings for Fibre-Based Food Packaging: A Semisystematic Review. Packag. Technol. Sci. 2024, 38, 255–280. [Google Scholar] [CrossRef]
- Eissenberger, K.; Ballesteros, A.; De Bisschop, R.; Bugnicourt, E.; Cinelli, P.; Defoin, M.; Demeyer, E.; Fürtauer, S.; Gioia, C.; Gómez, L.; et al. Approaches in Sustainable, Biobased Multilayer Packaging Solutions. Polymers 2023, 15, 1184. [Google Scholar] [CrossRef] [PubMed]
- Al Mahmud, Z.; Mobarak, H.; Hossain, N. Emerging trends in biomaterials for sustainable food packaging: A comprehensive review. Heliyon 2024, 10, e24122. [Google Scholar] [CrossRef] [PubMed]
- Foschi, E.; Zanni, S.; Bonoli, A. Combining Eco-Design and LCA as Decision-Making Process to Prevent Plastics in Packaging Application. Sustainability 2020, 12, 9738. [Google Scholar] [CrossRef]
- Raut, J.M.; Pande, P.B.; Madurwar, K.V.; Bhagat, R.M.; Uparkar, S.S.; Shelke, N.; Isleem, H.F.; Vairagade, V.S. Life cycle assessment and multicriteria decision making analysis of additive manufacturing processes towards optimal performance and sustainability. Sci. Rep. 2025, 15, 1–18. [Google Scholar] [CrossRef]
- Niero, M. Implementation of the European Union’s packaging and packaging waste regulation: A decision support framework combining quantitative environmental sustainability assessment methods and socio-technical approaches. Clean. Waste Syst. 2023, 6, 100112. [Google Scholar] [CrossRef]
- Zuliani, F.; Fedele, A.; Manzardo, A. Life cycle assessment-based decision making under methodological uncertainty: A framework proposal. J. Clean. Prod. 2024, 445, 141288. [Google Scholar] [CrossRef]
- Jäger, J.K.; Piscicelli, L. Collaborations for circular food packaging: The set-up and partner selection process. Sustain. Prod. Consum. 2021, 26, 733–740. [Google Scholar] [CrossRef]
- Thapliyal, D.; Karale, M.; Diwan, V.; Kumra, S.; Arya, R.K.; Verros, G.D. Current Status of Sustainable Food Packaging Regulations: Global Perspective. Sustainability 2024, 16, 5554. [Google Scholar] [CrossRef]
- Filho, W.L.; Barbir, J.; Venkatesan, M.; Salvia, A.L.; Dobri, A.; Bošković, N.; Eustachio, J.H.P.P.; Ingram, I.; Dinis, M.A.P. Policy Gaps and Opportunities in Bio-Based Plastics: Implications for Sustainable Food Packaging. Foods 2025, 14, 1955. [Google Scholar] [CrossRef]
- Igwe, A.N.; Eyo-Udo, N.L.; Toromade, A.S.; Adewale, T.T. Policy implications and economic incentives for sustainable supply chain practices in the food and FMCG Sectors. Compr. Res. Rev. J. 2024, 2, 023–036. [Google Scholar] [CrossRef]
- Arnaud, B. Extended Producer Responsibility and Green Marketing: An Application to Packaging. Environ. Resour. Econ. 2015, 67, 285–296. [Google Scholar] [CrossRef]
- Saldaña-Pierard, C.; Nguyen, P.M.; Debeaufort, F.; Vitrac, O.; Auras, R. Impact of emerging packaging regulations on international trade and product safety with emphasis on plastic reuse and recycling in Europe and North America. J. Ind. Ecol. 2025, 29, 1473–1504. [Google Scholar] [CrossRef]
- Joltreau, E. Extended Producer Responsibility, Packaging Waste Reduction and Eco-design. Environ. Resour. Econ. 2022, 83, 527–578. [Google Scholar] [CrossRef]
- González-López, M.E.; Calva-Estrada, S.d.J.; Gradilla-Hernández, M.S.; Barajas-Álvarez, P. Current trends in biopolymers for food packaging: A review. Front. Sustain. Food Syst. 2023, 7, 1225371. [Google Scholar] [CrossRef]

| Type of Material | Origin | Carbon Footprint | Biodegradability | Recyclability |
|---|---|---|---|---|
| PET (Polyethylene Terephthalate) | Fossil-based | Moderate to High | None | Moderate to High [20] |
| HDPE (High-Density Polyethylene) | Fossil-based | Moderate | None | Moderate [20] |
| PP (Polypropylene) | Fossil-based | Moderate | None | Low to Moderate [20] |
| Glass | Mineral-based | Very High | None | Very High [29] |
| Aluminum | Mineral-based | High | None | Very High [29] |
| Paper | Renewable | Low | High | Very High [27] |
| Cardboard | Renewable | Low to Moderate | High | Very High [27] |
| Moulded Pulp | Renewable | Low | High | High [27] |
| PLA (Polylactic Acid) | Bio-based | Low to Moderate | Compostable | Low [40] |
| PHA (Polyhydroxyalkanoates) | Bio-based | Low | High | Low [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Supto, S.T.J.; Ridoy, M.N. Assessing the Environmental Sustainability and Footprint of Industrial Packaging. Eng. Proc. 2025, 117, 34. https://doi.org/10.3390/engproc2025117034
Supto STJ, Ridoy MN. Assessing the Environmental Sustainability and Footprint of Industrial Packaging. Engineering Proceedings. 2025; 117(1):34. https://doi.org/10.3390/engproc2025117034
Chicago/Turabian StyleSupto, Sk. Tanjim Jaman, and Md. Nurjaman Ridoy. 2025. "Assessing the Environmental Sustainability and Footprint of Industrial Packaging" Engineering Proceedings 117, no. 1: 34. https://doi.org/10.3390/engproc2025117034
APA StyleSupto, S. T. J., & Ridoy, M. N. (2025). Assessing the Environmental Sustainability and Footprint of Industrial Packaging. Engineering Proceedings, 117(1), 34. https://doi.org/10.3390/engproc2025117034
