Evaluation of SLAM Methods for Small-Scale Autonomous Racing Vehicles †
Abstract
1. Introduction
2. Materials and Methods
2.1. Filter-Based and Graph-Based SLAM
2.2. Evaluated SLAM Methods
- Uses input data from a 2D laser scanner and optionally odometry.
- Provides occupancy grid map as output.
- It has an available implementation compatible with ROS 2 (Robot Operating System 2).
- Finally, the shortlisted, implemented, and compared SLAM methods were SLAM Toolbox and Google Cartographer.
2.3. Comparison Method
2.4. Data Acquisition Method
2.5. Ground Truth Data Creation
2.6. Evaluation Method
3. Results and Discussion
3.1. Quantitative Comparison
3.2. Visual Comparison
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, M.; Iqbal, R.; Amin, S.; Alhabshneh, O.; Garba, A. Autonomous Vehicle and its Adoption: Challenges, Opportunities, and Future Implications. In Proceedings of the 2022 International Conference on Emerging Trends in Computing and Engineering Applications (ETCEA), Karak, Jordan, 23–24 November 2022. [Google Scholar]
- RoboRacer Foundation, RoboRacer 2025. Available online: https://roboracer.ai/ (accessed on 28 January 2025).
- Tee, Y.K.; Han, Y.C. Lidar-Based 2D SLAM for Mobile Robot in an Indoor Environment: A Review. In Proceedings of the 2021 International Conference on Green Energy, Computing and Sustainable Technology (GECOST), Miri, Malaysia, 7–9 July 2021. [Google Scholar]
- Montemerlo, M.; Thrun, S.; Koller, D.; Wegbreit, B. FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem. In Proceedings of the Eighteenth National Conference on Artificial Intelligence, Edmonton, AB, Canada, 28 July–1 August 2002. [Google Scholar]
- Grisetti, G.; Kümmerle, R.; Burgard, W. A Tutorial on Graph-Based SLAM. IEEE Trans. Intell. Transp. Syst. 2010, 2, 31–43. [Google Scholar] [CrossRef]
- Konolige, K.; Grisetti, G.; Kümmerle, R.; Burgard, W.; Limketkai, B.; Vincent, R. Efficient Sparse Pose Adjustment for 2D Mapping. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010. [Google Scholar]
- Fallon, M.F.; Johannsson, H.; Leonard, J.J. Efficient Scene Simulation for Robust Monte Carlo Localization Using an RGB-D Camera. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA, 14–18 May 2012. [Google Scholar]
- Macenski, S.; Jambrecic, I. SLAM Toolbox: SLAM for the Dynamic World. J. Open Source Softw. 2021, 6, 61. [Google Scholar] [CrossRef]
- Agarwal, S.; Mierle, K.; The Ceres Solver Team. Ceres Solver. Available online: https://github.com/ceres-solver/ceres-solver (accessed on 27 January 2025).
- Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-Time Loop Closure in 2D LiDAR SLAM. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016. [Google Scholar]
- NVIDIA, Jetson Xavier NX Data Sheet. Available online: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/ (accessed on 26 January 2025).
- Hokuyo Automatic Co., Ltd. UST-10LX 2D Laser Scanner Specifications. Available online: https://www.hokuyo-aut.jp/ (accessed on 26 January 2025).
- The VESC Project, VESC 6 Hardware. Available online: https://vesc-project.com/node/311 (accessed on 26 January 2025).
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Trans. Robot. 2016, 32, 1309–1332. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, H. Performance evaluation of 2D LiDAR SLAM algorithms in simulated orchard environments. Comput. Electron. Agric. 2024, 221, 108994. [Google Scholar] [CrossRef]





| Metric | SLAM Toolbox | Google Cartographer |
|---|---|---|
| SSIM | 0.757566 | 0.734216 |
| DSC | 0.6082 | 0.6099 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krecht, R.; Alabdallah, A.M.A.; Farraj, B.J.B. Evaluation of SLAM Methods for Small-Scale Autonomous Racing Vehicles. Eng. Proc. 2025, 113, 9. https://doi.org/10.3390/engproc2025113009
Krecht R, Alabdallah AMA, Farraj BJB. Evaluation of SLAM Methods for Small-Scale Autonomous Racing Vehicles. Engineering Proceedings. 2025; 113(1):9. https://doi.org/10.3390/engproc2025113009
Chicago/Turabian StyleKrecht, Rudolf, Abdelrahman Mutaz A. Alabdallah, and Barham Jeries B. Farraj. 2025. "Evaluation of SLAM Methods for Small-Scale Autonomous Racing Vehicles" Engineering Proceedings 113, no. 1: 9. https://doi.org/10.3390/engproc2025113009
APA StyleKrecht, R., Alabdallah, A. M. A., & Farraj, B. J. B. (2025). Evaluation of SLAM Methods for Small-Scale Autonomous Racing Vehicles. Engineering Proceedings, 113(1), 9. https://doi.org/10.3390/engproc2025113009

