Rapid Temperature Annealing Effect on Bipolar Switching and Electrical Properties of SiC Thin Film-Resistant Random-Access Memory Devices †
Abstract
1. Introduction
2. Experiment
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, L.; Dai, T.J.; Liu, K.; Chang, K.C.; Zhang, R.; Lin, X.; Liu, H.J.; Lai, Y.C.; Kuo, T.P. Achieving complementary resistive switching and multi-bit storage goals by modulating the dual-ion reaction through supercritical fluid-assisted ammoniation. Nanoscale 2021, 13, 14035–14040. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chang, K.C.; Zhang, R.; Lin, X.; Lai, Y.C.; Kuo, T.P. Variable-temperature activation energy extraction to clarify the physical and chemical mechanisms of the resistive switching process. Nanoscale 2020, 12, 15721–15724. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chang, K.C.; Ye, C.; Lin, X.; Zhang, R.; Xu, Z.; Xiong, W.; Zhou, Y.; Kuo, T.P. An Indirect Way to Achieve Comprehensive Performance Improvement of Resistive Memory: When Hafnium Meets ITO in Electrode. Nanoscale 2020, 12, 3267–3272. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.C.; Dai, T.J.; Li, L.; Lin, X.N.; Zhang, S.D.; Lai, Y.C.; Liu, H.J.; Syu, Y.E. Unveiling the influence of surrounding materials and realization of multi-level storage in resistive switching memory. Nanoscale 2020, 12, 22070–22074. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.C.; Zhang, R.; Chang, T.C.; Tsai, T.M.; Chu, T.J.; Chen, H.L.; Shih, C.C.; Pan, C.H.; Su, Y.T.; Wu, P.J.; et al. High performance, excellent reliability multifunctional graphene oxide doped memristor achieved by self-protective compliance current structure. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 15–17 December 2014; pp. 33–34. [Google Scholar]
- Chen, K.-H.; Cheng, C.-M.; Wang, N.-F.; Hung, H.-W.; Li, C.-Y.; Wu, S. First Order Rate Law Analysis for Reset State in Vanadium Oxide Thin Film Resistive Random Access Memory Devices. Nanomaterials 2023, 13, 198. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-H.; Kao, M.-C.; Cheng, C.-M.; Wang, Y.-C.; Hsieh, C.-C.; Hung, G.-J. Study on Supercritical Fluid Technique for Application in Nonvolatile Resistive Random Access Memory (RRAM) Device Using SBT Ferroelectric Thin Films. In Proceedings of the 2024 IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium (UFFC-JS), Taipei, Taiwan, 22–26 September 2024. [Google Scholar] [CrossRef]
- Chen, K.-H.; Chen, Y.-C.; Chen, Z.-S.; Yang, C.-F. Temperature and frequency dependence of the ferroelectric characteristics of BaTiO3 thin films for nonvolatile memory applications. Appl. Phys. A 2007, 89, 533–536. [Google Scholar] [CrossRef]
- Zhang, R.; Young, T.-F.; Chen, M.-C.; Chen, H.-L.; Liang, S.-P.; Syu, Y.-E.; Sze, S.M.; Chang, K.-C.; Chang, T.-C.; Tsai, T.-M.; et al. Characterization of Oxygen Accumulation in Indium-Tin-Oxide for Resistance Random Access Memory. IEEE Electron. Device Lett. 2014, 35, 630–632. [Google Scholar] [CrossRef]
- Chang, K.C.; Chang, T.C.; Tsai, T.M.; Zhang, R.; Hung, Y.C.; Syu, Y.E.; Chang, Y.F.; Chen, M.C.; Chu, T.J.; Chen, H.L.; et al. Physical and chemical mechanisms in oxide-based resistance random access memory. Nano Rev. 2015, 10, 120. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Liu, D.; Zhang, H.; Kong, X. Electronic transport and shot noise in Thue-Morse sequence graphene superlattice. Appl. Phys. 2013, 113, 043702. [Google Scholar] [CrossRef]
- Jung, J.; Lee, D.; Chae, M.; Kim, H.-D. Influence on Post-treatment Process on Optical and Electrical Properties of IZO Thin Films. Trans. Electr. Electron. Mater. 2024, 25, 347–355. [Google Scholar] [CrossRef]
- Trinidad-Urbina, R.E.; Castanedo-Perez, R.; Torres-Delgado, G.; Sanchez-Martinez, A.; Ramirez-Bon, R. Effects of rapid heat treatments on the properties of cu 2 o thin films deposited at room temperature using an ammonia-free silar technique. J. Electron. Mater. 2024, 9, 53. [Google Scholar]
RF Power (W) | 50, 75 W |
Working pressure | 10 mTorr |
Temperature | Room temperature |
Process time (min) | 30, 60, 120 min |
Target material | Silicon carbide |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.-H.; Kao, M.-C.; Wang, Y.-C.; Chen, H.-C.; Kao, C.-C.H. Rapid Temperature Annealing Effect on Bipolar Switching and Electrical Properties of SiC Thin Film-Resistant Random-Access Memory Devices. Eng. Proc. 2025, 108, 38. https://doi.org/10.3390/engproc2025108038
Chen K-H, Kao M-C, Wang Y-C, Chen H-C, Kao C-CH. Rapid Temperature Annealing Effect on Bipolar Switching and Electrical Properties of SiC Thin Film-Resistant Random-Access Memory Devices. Engineering Proceedings. 2025; 108(1):38. https://doi.org/10.3390/engproc2025108038
Chicago/Turabian StyleChen, Kai-Huang, Ming-Cheng Kao, Yao-Chin Wang, Hsin-Chin Chen, and Chin-Chueh Huang Kao. 2025. "Rapid Temperature Annealing Effect on Bipolar Switching and Electrical Properties of SiC Thin Film-Resistant Random-Access Memory Devices" Engineering Proceedings 108, no. 1: 38. https://doi.org/10.3390/engproc2025108038
APA StyleChen, K.-H., Kao, M.-C., Wang, Y.-C., Chen, H.-C., & Kao, C.-C. H. (2025). Rapid Temperature Annealing Effect on Bipolar Switching and Electrical Properties of SiC Thin Film-Resistant Random-Access Memory Devices. Engineering Proceedings, 108(1), 38. https://doi.org/10.3390/engproc2025108038