Recent Advancements in Machine Learning Models for Malware Detection: A Systematic Literature Review †
Abstract
1. Introduction
2. Methodology
2.1. Search Strategy and Criteria
2.2. Eligibility Criteria
2.3. Data Synthesis
2.4. Analysis
3. Result and Discussion
3.1. Recent Advancements in Machine Learning Algorithms for Malware Detection
3.2. Common Datasets Used in Machine Learning for Malware Detection
- VirusShare: This dataset is the most frequently used and provides a wide range of real-world malware samples, particularly for IoT platforms. It ensures access to diverse and up-to-date malware threats, enabling comprehensive model training.
- VirusTotal: Commonly used alongside VirusShare, it offers extensive malware samples for evaluation. It supports quick analysis and comparison due to its wide adoption and integration capabilities.
- PE Dataset and ELF Dataset: These datasets are frequently used for detecting malware across platforms using advanced methods like wavelet transforms. They focus on platform-specific characteristics, allowing tailored detection approaches.
- Android App Dataset: This dataset includes applications from Google Play Store and third-party sources, useful for mobile malware detection research. It aids in analyzing Android-specific malware patterns and supports optimization-based deep learning techniques.
- Multi-Step Cyberattack Dataset (MSCAD): This dataset is useful for evaluating sequential attacks and traditional algorithms like KNN. It is particularly effective for testing multi-step threat detection models.
- 2018 Information Protection R&D Data Challenge: Focused on PE Header feature-based studies, this dataset supports malware detection on desktop platforms. It offers rich metadata for feature-based analysis, improving binary classification models.
3.3. Performance of Machine Learning Models Across Platforms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Wang, D.; Li, M. Convenience Analysis of Sustainable E-Agriculture Based on Blockchain Technology. J. Clean. Prod. 2020, 271, 122503. [Google Scholar] [CrossRef]
- Lee, C.C.; Yuan, Z.; Wang, Q. How Does Information and Communication Technology Affect Energy Security? International Evidence. Energy Econ. 2022, 109, 105969. [Google Scholar] [CrossRef]
- Venkatachary, S.K.; Prasad, J.; Alagappan, A.; Andrews, L.J.B.; Raj, R.A.; Duraisamy, S. Cybersecurity and Cyber-Terrorism Challenges to Energy-Related Infrastructures–Cybersecurity Frameworks and Economics–Comprehensive Review. Int. J. Crit. Infrastruct. Prot. 2024, 45, 100677. [Google Scholar] [CrossRef]
- Geer, D.; Jardine, E.; Leverett, E. On Market Concentration and Cybersecurity Risk. J. Cyber Policy 2020, 5, 9–29. [Google Scholar] [CrossRef]
- Caviglione, L.; Choras, M.; Corona, I.; Janicki, A.; Mazurczyk, W.; Pawlicki, M.; Wasielewska, K. Tight Arms Race: Overview of Current Malware Threats and Trends in Their Detection. IEEE Access 2021, 9, 5371–5396. [Google Scholar] [CrossRef]
- Lallie, H.S.; Shepherd, L.A.; Nurse, J.R.C.; Erola, A.; Epiphaniou, G.; Maple, C.; Bellekens, X. Cyber Security in the Age of COVID-19: A Timeline and Analysis of Cyber-Crime and Cyber-Attacks during the Pandemic. Comput. Secur. 2021, 105, 102248. [Google Scholar] [CrossRef]
- Prasad, R.; Rohokale, V. Cyber Security: The Lifeline of Information and Communication Technology; Springer International Publishing: Cham, Switzerland, 2020; pp. 67–81. ISBN 978-3-030-31703-4. [Google Scholar]
- Kara, I. A Basic Malware Analysis Method. Comput. Fraud Secur. 2019, 2019, 11–19. [Google Scholar] [CrossRef]
- Saba, T.; Rehman, A.; Sadad, T.; Kolivand, H.; Bahaj, S.A. Anomaly-Based Intrusion Detection System for IoT Networks through Deep Learning Model. Comput. Electr. Eng. 2022, 99, 107810. [Google Scholar] [CrossRef]
- Tasheva, I. Cybersecurity Post-COVID-19: Lessons Learned and Policy Recommendations. Eur. View 2021, 20, 140–149. [Google Scholar] [CrossRef]
- Shaukat, K.; Luo, S.; Varadharajan, V.; Hameed, I.A.; Xu, M. A Survey on Machine Learning Techniques for Cyber Security in the Last Decade. IEEE Access 2020, 8, 222310–222354. [Google Scholar] [CrossRef]
- Beaman, C.; Barkworth, A.; Akande, T.D.; Hakak, S.; Khan, M.K. Ransomware: Recent Advances, Analysis, Challenges and Future Research Directions. Comput. Secur. 2021, 111, 102490. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Q. A Comprehensive Review Study of Cyber-Attacks and Cyber Security; Emerging Trends and Recent Developments. Energy Rep. 2021, 7, 8176–8186. [Google Scholar] [CrossRef]
- Aslan, O.; Samet, R. A Comprehensive Review on Malware Detection Approaches. IEEE Access 2020, 8, 6249–6271. [Google Scholar] [CrossRef]
- Chenet, C.P.; Savino, A.; Di Carlo, S. A Survey on Hardware-Based Malware Detection Approaches. IEEE Access 2024, 12, 54115–54128. [Google Scholar] [CrossRef]
- Soja Rani, S.; Reeja, S.R. A Survey on Different Approaches for Malware Detection Using Machine Learning Techniques. In Sustainable Communication Networks and Application; Karrupusamy, P., Chen, J., Shi, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 389–398. [Google Scholar]
- Murali, R.; Ravi, A.; Agarwal, H. A Malware Variant Resistant To Traditional Analysis Techniques. In Proceedings of the 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore, India, 24–25 February 2020; pp. 1–7. [Google Scholar]
- Maiorca, D.; Ariu, D.; Corona, I.; Aresu, M.; Giacinto, G. Stealth Attacks: An Extended Insight into the Obfuscation Effects on Android Malware. Comput. Secur. 2015, 51, 16–31. [Google Scholar] [CrossRef]
- Halbouni, A.; Gunawan, T.S.; Habaebi, M.H.; Halbouni, M.; Kartiwi, M.; Ahmad, R. Machine Learning and Deep Learning Approaches for CyberSecurity: A Review. IEEE Access 2022, 10, 19572–19585. [Google Scholar] [CrossRef]
- Zhang, W.; Gu, X.; Tang, L.; Yin, Y.; Liu, D.; Zhang, Y. Application of Machine Learning, Deep Learning and Optimization Algorithms in Geoengineering and Geoscience: Comprehensive Review and Future Challenge. Gondwana Res. 2022, 109, 1–17. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Panker, T.; Nissim, N. Leveraging Malicious Behavior Traces from Volatile Memory Using Machine Learning Methods for Trusted Unknown Malware Detection in Linux Cloud Environments. Knowl.-Based Syst. 2021, 226, 107095. [Google Scholar] [CrossRef]
- Rahul; Kedia, P.; Sarangi, S. Monika Analysis of Machine Learning Models for Malware Detection. J. Discret. Math. Sci. Cryptogr. 2020, 23, 395–407. [Google Scholar] [CrossRef]
- Kamboj, A.; Kumar, P.; Bairwa, A.K.; Joshi, S. Detection of Malware in Downloaded Files Using Various Machine Learning Models. Egypt. Inform. J. 2023, 24, 81–94. [Google Scholar] [CrossRef]
- Kumar, A.; Abhishek, K.; Shandilya, S.K.; Ghalib, M.R. Malware Analysis Through Random Forest Approach. J. Web Eng. 2020, 19, 795–818. [Google Scholar] [CrossRef]
- Alqhatani, M.A. Machine Learning Techniques for Malware Detection with Challenges and Future Directions. IJCNIS 2021, 13, 258–270. [Google Scholar] [CrossRef]
- Estay, H.; Lois-Morales, P.; Montes-Atenas, G.; Ruiz del Solar, J. On the Challenges of Applying Machine Learning in Mineral Processing and Extractive Metallurgy. Minerals 2023, 13, 788. [Google Scholar] [CrossRef]
- Hindy, H.; Brosset, D.; Bayne, E.; Seeam, A.K.; Tachtatzis, C.; Atkinson, R.; Bellekens, X. A Taxonomy of Network Threats and the Effect of Current Datasets on Intrusion Detection Systems. IEEE Access 2020, 8, 104650–104675. [Google Scholar] [CrossRef]
- Gibert, D.; Mateu, C.; Planes, J. The Rise of Machine Learning for Detection and Classification of Malware: Research Developments, Trends and Challenges. J. Netw. Comput. Appl. 2020, 153, 102526. [Google Scholar] [CrossRef]
- Gorment, N.Z.B.; Selamat, A.; Krejcar, O. A Recent Research on Malware Detection Using Machine Learning Algorithm: Current Challenges and Future Works. In Advances in Visual Informatics; Badioze Zaman, H., Smeaton, A.F., Shih, T.K., Velastin, S., Terutoshi, T., Jørgensen, B.N., Aris, H., Ibrahim, N., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 469–481. [Google Scholar]
- Bansal, A.; Sharma, R.; Kathuria, M. A Systematic Review on Data Scarcity Problem in Deep Learning: Solution and Applications. ACM Comput. Surv. 2022, 54, 1–29. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Bai, J.; Al-Sabaawi, A.; Santamaría, J.; Albahri, A.S.; Al-dabbagh, B.S.N.; Fadhel, M.A.; Manoufali, M.; Zhang, J.; Al-Timemy, A.H.; et al. A Survey on Deep Learning Tools Dealing with Data Scarcity: Definitions, Challenges, Solutions, Tips, and Applications. J. Big Data 2023, 10, 46. [Google Scholar] [CrossRef]
- Pachhala, N.; Jothilakshmi, S.; Battula, B.P. A Comprehensive Survey on Identification of Malware Types and Malware Classification Using Machine Learning Techniques. In Proceedings of the 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 7–9 October 2021; pp. 1207–1214. [Google Scholar]
- Gorment, N.Z.; Selamat, A.; Cheng, L.K.; Krejcar, O. Machine Learning Algorithm for Malware Detection: Taxonomy, Current Challenges, and Future Directions. IEEE Access 2023, 11, 141045–141089. [Google Scholar] [CrossRef]
- Giannakas, F.; Kouliaridis, V.; Kambourakis, G. A Closer Look at Machine Learning Effectiveness in Android Malware Detection. Information 2023, 14, 2. [Google Scholar] [CrossRef]
- Chua, T.H.; Salam, I. Evaluation of Machine Learning Algorithms in Network-Based Intrusion Detection Using Progressive Dataset. Symmetry 2023, 15, 1251. [Google Scholar] [CrossRef]
- Thambawita, V.; Jha, D.; Hammer, H.L.; Johansen, H.D.; Johansen, D.; Halvorsen, P.; Riegler, M.A. An Extensive Study on Cross-Dataset Bias and Evaluation Metrics Interpretation for Machine Learning Applied to Gastrointestinal Tract Abnormality Classification. ACM Trans. Comput. Healthc. 2020, 1, 1–29. [Google Scholar] [CrossRef]
- Maniriho, P.; Mahmood, A.N.; Chowdhury, M.J.M. A Survey of Recent Advances in Deep Learning Models for Detecting Malware in Desktop and Mobile Platforms. ACM Comput. Surv. 2024, 56, 1–41. [Google Scholar] [CrossRef]
- Lee, Y.-T.; Ban, T.; Wan, T.-L.; Cheng, S.-M.; Isawa, R.; Takahashi, T.; Inoue, D. Cross Platform IoT-Malware Family Classification Based on Printable Strings. In Proceedings of the 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Guangzhou, China, 29 December–1 January 2020; pp. 775–784. [Google Scholar]
- Al-Janabi, M.; Altamimi, A.M. A Comparative Analysis of Machine Learning Techniques for Classification and Detection of Malware. In Proceedings of the 2020 21st International Arab Conference on Information Technology (ACIT), Giza, Egypt, 28–30 November 2020; pp. 1–9. [Google Scholar]
- AliAhmad, A.; Eleyan, D.; Eleyan, A.; Bejaoui, T.; Zolkipli, M.F.; Al-Khalidi, M. Malware Detection Issues, Future Trends and Challenges: A Survey. In Proceedings of the 2023 International Symposium on Networks, Computers and Communications (ISNCC), Doha, Qatar, 23–26 October 2023; pp. 1–6. [Google Scholar]
- Darem, A.A.; Ghaleb, F.A.; Al-Hashmi, A.A.; Abawajy, J.H.; Alanazi, S.M.; Al-Rezami, A.Y. An Adaptive Behavioral-Based Incremental Batch Learning Malware Variants Detection Model Using Concept Drift Detection and Sequential Deep Learning. IEEE Access 2021, 9, 97180–97196. [Google Scholar] [CrossRef]
- Krishna, G.B.; Kumar, G.S.; Ramachandra, M.; Pattem, K.S.; Rani, D.S.; Kakarla, G. Adapting to Evasive Tactics through Resilient Adversarial Machine Learning for Malware Detection. In Proceedings of the 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 28 February–1 March 2024; pp. 1735–1741. [Google Scholar]
- Chand, R. Framework for Identifying Research Gaps for Future Academic Research. IRA Int. J. Educ. Multidiscip. Stud. 2023, 19, 160. [Google Scholar] [CrossRef]
- Madukwe, K.J.; Gao, X.; Xue, B. In Data We Trust: A Critical Analysis of Hate Speech Detection Datasets. In Proceedings of the Fourth Workshop on Online Abuse and Harms, Online, 20 November 2020; pp. 150–161. [Google Scholar]
- Miranda, T.C.; Gimenez, P.-F.; Lalande, J.-F.; Tong, V.V.T.; Wilke, P. Debiasing Android Malware Datasets: How Can I Trust Your Results If Your Dataset Is Biased? IEEE Trans. Inf. Forensics Secur. 2022, 17, 2182–2197. [Google Scholar] [CrossRef]
- Serizel, R.; Turpault, N.; Shah, A.; Salamon, J. Sound Event Detection in Synthetic Domestic Environments. In Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2020), Virtual, 4–8 May 2020; pp. 86–90. [Google Scholar]
- Sabbah, A.; Taweel, A.; Zein, S. Android Malware Detection: A Literature Review. In Communications in Computer and Information Science, Proceedings of the Second International Conference (UbiSec 2022), Zhangjiajie, China, 28–31 December 2022; Wang, G., Choo, K.-K.R., Wu, J., Damiani, E., Eds.; Springer Nature: Singapore, 2023; Volume 1768, pp. 263–278. [Google Scholar]
- Martins, N.; Cruz, J.M.; Cruz, T.; Abreu, P.H. Adversarial Machine Learning Applied to Intrusion and Malware Scenarios: A Systematic Review. IEEE Access 2020, 8, 35403–35419. [Google Scholar] [CrossRef]
- Raju, G.S.B.; Manasa, C.; Bhavani, N.D.; Amulya, J.; Shirisha, D. Comparative Analysis of Different Machine Learning Algorithms on Different Datasets. In Proceedings of the 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 17–19 May 2023; pp. 104–109. [Google Scholar]
- Khan, K.S.; Bueno-Cavanillas, A.; Zamora, J. Revisiones Sistemáticas En Cinco Pasos: II. Cómo Identificar Los Estudios Relevantes. Med. Familia. Semer. 2022, 48, 431–436. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. J. Clin. Epidemiol. 2021, 134, 178–189. [Google Scholar] [CrossRef]
- Pérez, J.; Díaz, J.; Garcia-Martin, J.; Tabuenca, B. Systematic Literature Reviews in Software Engineering—Enhancement of the Study Selection Process Using Cohen’s Kappa Statistic. J. Syst. Softw. 2020, 168, 110657. [Google Scholar] [CrossRef]
- Okesola, M.; Okesola, J.; Ogunlana, O.; Afolabi, I. Quality Assessment of Systematic Literature on Uterine Fibroids: A Systematic Review. F1000Research 2024, 11, 1050. [Google Scholar] [CrossRef]
- Kumar, Y.; Gupta, S.; Singla, R.; Hu, Y.-C. A Systematic Review of Artificial Intelligence Techniques in Cancer Prediction and Diagnosis. Arch. Comput. Methods Eng. 2022, 29, 2043–2070. [Google Scholar] [CrossRef] [PubMed]
- Maity, S.; Hossain, M.A.; Maji, K.; Mishra, S.; Nath, S.; Gupta, S. ANALYZING and COMPARING Random Forest and K-Nearest Neighbours for Effective Heart Disease Prediction. In Proceedings of the 2024 4th International Conference on Intelligent Technologies (CONIT), Bangalore, India, 21–23 June 2024; pp. 1–6. [Google Scholar]
- Bruzzese, R. Building Visual Malware Dataset Using VirusShare Data and Comparing Machine Learning Baseline Model to CoAtNet for Malware Classification. In Proceedings of the 2024 16th International Conference on Machine Learning and Computing (ICMLC ’24), Shenzhen, China, 2–5 February 2025; pp. 185–193. [Google Scholar] [CrossRef]
- Azalmad, M.; El Ayachi, R.; Biniz, M. Unveiling the Performance Insights: Benchmarking Anomaly-Based Intrusion Detection Systems Using Decision Tree Family Algorithms on the CICIDS2017 Dataset. In Lecture Notes in Business Information Processing, Proceedings of the 8th International Conference on Business Intelligence (CBI 2023), Istanbul, Turkey, 19–21 July 2023; El Ayachi, R., Fakir, M., Baslam, M., Eds.; Springer Nature: Cham, Switzerland, 2023; Volume 484, pp. 202–219. [Google Scholar]
- Baghirov, E. Evaluating the Performance of Different Machine Learning Algorithms for Android Malware Detection. In Proceedings of the 2023 5th International Conference on Problems of Cybernetics and Informatics (PCI), Baku, Azerbaijan, 28–30 August 2023; pp. 1–4. [Google Scholar]
- Azmee, A.A.; Choudhury, P.P.; Alam, A.M.; Dutta, O.; Hossai, M.I. Performance Analysis of Machine Learning Classifiers for Detecting PE Malware. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 510–517. [Google Scholar] [CrossRef]
- Hsu, D.; Muthukumar, V.; Xu, J. On the Proliferation of Support Vectors in High Dimensions. J. Stat. Mech. Theory Exp. 2022, 2022, 114011. [Google Scholar] [CrossRef]
- Velarde, G.; Sudhir, A.; Deshmane, S.; Deshmunkh, A.; Sharma, K.; Joshi, V. Evaluating XGBoost for Balanced and Imbalanced Data: Application to Fraud Detection. arXiv 2023, arXiv:2303.15218. [Google Scholar] [CrossRef]
- Kari, T.; Leelavani, N.; Sayeera Banu, A.; DhanuShree, R.; Jagannatha, K.B.; Natarajan, S. An Accelerated Approach to Parallel Ensemble Techniques Targeting Healthcare and Environmental Applications. In Proceedings of the 2020 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies, Shillong, India, 5–7 March 2021; pp. 1–6. [Google Scholar]
- Orlenko, A.; Moore, J.H. A comparison of methods for interpreting random forest models of genetic association in the presence of non-additive interactions. BioData Min. 2021, 14, 9. [Google Scholar] [CrossRef]
- Düzgün, B.; Çayır, A.; Demirkiran, F.; Kayha, C.N.; Gençaydın, B.; Dag, H. New Datasets for Dynamic Malware Classification. arXiv 2021, arXiv:2111.15205. [Google Scholar]
- Gaber, M.G.; Ahmed, M.; Janicke, H. Malware Detection with Artificial Intelligence: A Systematic Literature Review. ACM Comput. Surv. 2024, 56, 1–33. [Google Scholar] [CrossRef]
- Chataut, R.; Phoummalayvane, A.; Akl, R. Unleashing the Power of IoT: A Comprehensive Review of IoT Applications and Future Prospects in Healthcare, Agriculture, Smart Homes, Smart Cities, and Industry 4.0. Sensors 2023, 23, 7194. [Google Scholar] [CrossRef]
- Aziz Al Kabir, M.; Elmedany, W.; Sharif, M.S. Securing IoT Devices Against Emerging Security Threats: Challenges and Mitigation Techniques. J. Cyber Secur. Technol. 2023, 7, 199–223. [Google Scholar] [CrossRef]
- Almohri, H.M.J.; Watson, L.T.; Evans, D. An Attack-Resilient Architecture for the Internet of Things. IEEE Trans. Inf. Forensics Secur. 2020, 15, 3940–3954. [Google Scholar] [CrossRef]
- Aamerkhan, G.; Sharma, U. IoT Under Siege: The Dark Side of Internet-Connected Devices. Int. J. Multidiscip. Res. 2024, 6, 1–6. [Google Scholar] [CrossRef]
- Gopinath, M.; Sethuraman, S.C. A Comprehensive Survey on Deep Learning Based Malware Detection Techniques. Comput. Sci. Rev. 2023, 47, 100529. [Google Scholar] [CrossRef]
Criteria | Inclusion | Exclusion |
---|---|---|
Publication Year | 2020–2024 | Outside this time range |
Document Type | Articles (not conferences or book reviews) | Conferences, book reviews, or literature reviews without implementation |
Keywords | Contains keywords “machine learning” and “malware” | Does not contain relevant keywords |
Accessibility | Open access | Those not publicly accessible |
Methodology Approach | Utilizes machine learning methods for malware detection | Uses traditional techniques without machine learning |
Data Analysis | Provides empirical data or in-depth analysis related to the methods used | Does not provide empirical data or focuses solely on theoretical discussions without experiments |
Title | Algorithm | Dataset | Accuracy | Platform | Year | Country |
---|---|---|---|---|---|---|
Detection And Prevention Of Cyber Defense Attacks Using Machine Learning Algorithms | K-Nearest Neighbors (KNN) | Multi-step cyberattack dataset (MSCAD) | 82.75% | IoT | 2024 | China |
A Deep Reinforcement Learning Framework to Evade Black-Box Machine Learning Based IoT Malware Detectors Using GAN-Generated Influential Features | Random Forest, Gradient Boosting, Multi-Layer Perceptron (MLP), Decision Tree | VirusShare and VirusTotal | 75.5% | IoT | 2023 | Saudi Arabia |
HMLET: Hunt Malware Using Wavelet Transform on Cross-Platform | LGBM (LightGBM) and XGBoost | PE dataset, dan ELF dataset | 96.57% | Multi-platform | 2022 | South Korea |
PermDroid: a framework developed using proposed feature selection approach and machine learning techniques for Android malware detection | Gradient Descent, Quasi-Newton, Gradient Descent with Momentum, Levenberg–Marquardt, Gradient Descent with Adaptive learning rate, and Deep Neural Network | Android applications (Google Play Store and third-party app stores) | 98.8% | Android | 2024 | India |
Static Analysis and Machine Learning-based Malware Detection System using PE Header Feature Values | Logistic Regression, SVM, Random Forest, XGBoost | 2018 information protection R&D Data Challenge AI--based malware detection track | 94.6% | Desktop | 2022 | South Korea |
Static Malware Analysis Using Low-Parameter Machine Learning Models | Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), and Gradient Boosting Machines (GBMs). | VirusShare | 93.44% | IoT | 2024 | Mexico |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasanah, N.I.; Insany, G.P.; Kharisma, I.L.; Rahayu, N.D. Recent Advancements in Machine Learning Models for Malware Detection: A Systematic Literature Review. Eng. Proc. 2025, 107, 78. https://doi.org/10.3390/engproc2025107078
Hasanah NI, Insany GP, Kharisma IL, Rahayu ND. Recent Advancements in Machine Learning Models for Malware Detection: A Systematic Literature Review. Engineering Proceedings. 2025; 107(1):78. https://doi.org/10.3390/engproc2025107078
Chicago/Turabian StyleHasanah, Nurul Islam, Gina Purnama Insany, Ivana Lucia Kharisma, and Natasya Dewi Rahayu. 2025. "Recent Advancements in Machine Learning Models for Malware Detection: A Systematic Literature Review" Engineering Proceedings 107, no. 1: 78. https://doi.org/10.3390/engproc2025107078
APA StyleHasanah, N. I., Insany, G. P., Kharisma, I. L., & Rahayu, N. D. (2025). Recent Advancements in Machine Learning Models for Malware Detection: A Systematic Literature Review. Engineering Proceedings, 107(1), 78. https://doi.org/10.3390/engproc2025107078