Boosting Software Fault Prediction Accuracy with Ensemble Learning †
Abstract
1. Introduction
2. Literature Review
3. Research Methodology
3.1. Bayes Net
3.2. C4.5 Decision Tree
3.3. Multilayer Perceptron
3.4. Random Forest
3.5. Ensemble Model
Algorithm 1. Pseudo-code |
Input: A Stream of pairs (x,y),
Parameter (0,1) Output: A Stream of prediction for each 1. Initialize experts with weight each 2. for each in stream do Collect Predictions for do if then for , do |
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Menzies, T.; Dekhtyar, A.; Distefano, J.; Greenwald, J. Problems with precision: A response to ‘Comments on “data mining static code attributes to learn defect predictors”’. TSE 2007, 33, 637–640. [Google Scholar] [CrossRef]
- Lin, J.S.; Huang, C.Y. Queueing-Based Simulation for Software Reliability Analysis. IEEE Access 2022, 10, 107729–107747. [Google Scholar] [CrossRef]
- Akintola, A.G.; Balogun, A.; Lafenwa-Balogun, F.B.; Mojeed, H.A. Comparative Analysis of Selected Heterogeneous Classifiers for Software Defects Prediction Using Filter-Based Feature Selection Methods. FUOYE J. Eng. Technol. 2018, 3, 1. [Google Scholar] [CrossRef]
- Li, Z.; Niu, J.; Jing, X.Y. Software defect prediction: Future directions and challenges. Autom. Softw. Eng. 2024, 31, 1. [Google Scholar] [CrossRef]
- Hall, T.; Beecham, S.; Bowes, D.; Gray, D.; Counsell, S. A systematic literature review on fault prediction performance in software engineering. TSE 2012, 38, 1276–1304. [Google Scholar] [CrossRef]
- Alsaeedi, A.; Khan, M.Z. Software Defect Prediction Using Supervised Machine Learning and Ensemble Techniques: A Comparative Study. J. Softw. Eng. Appl. 2019, 12, 85–100. [Google Scholar] [CrossRef]
- Matloob, F.; Ghazal, T.M.; Taleb, N.; Aftab, S.; Ahmad, M.; Khan, M.A.; Abbas, S.; Soomro, T.R. Software defect prediction using ensemble learning: A systematic literature review. IEEE Access 2021, 9, 98754–98771. [Google Scholar] [CrossRef]
- Malhotra, R.; Jain, A. Fault prediction using statistical and machine learning methods for improving software quality. J. Inf. Process. Syst. 2012, 8, 241–262. [Google Scholar] [CrossRef]
- Mehta, A.; Kaur, N.; Kaur, A. Addressing Class Imbalance in Software Fault Prediction using BVPC-SENN: A Hybrid Ensemble Approach. Int. J. Perform. Eng. 2025, 21, 94–103. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.; Pan, J.; Chen, G.; Zi, Y.; Yuan, J.; Chen, B.; He, Z. Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review. Mech. Syst. Signal Process. 2016, 70–71, 1–35. [Google Scholar] [CrossRef]
- Arun, C.; Lakshmi, C. Genetic algorithm-based oversampling approach to prune the class imbalance issue in software defect prediction. Soft Comput. 2022, 26, 12915–12931. [Google Scholar] [CrossRef]
- Lee, S.Y.; Wong, W.E.; Li, Y.; Chu, W.C.C. Software Fault-Proneness Analysis based on Composite Developer-Module Networks. IEEE Access 2021, 9, 155314–155334. [Google Scholar] [CrossRef]
- Deng, J.; Lu, L.; Qiu, S.; Ou, Y. A suitable AST node granularity and multi-kernel transfer convolutional neural network for cross-project defect prediction. IEEE Access 2020, 8, 66647–66661. [Google Scholar] [CrossRef]
- Šikić, L.; Kurdija, A.; Vladimir, K.; Šilić, M. Graph neural network for source code defect prediction. IEEE Access 2022, 10, 10402–10415. [Google Scholar] [CrossRef]
- Chennappan, R.; Thulasiraman, V. An automated software failure prediction technique using hybrid Machine learning algorithms. J. Eng. Res. 2023, 11, 100002. [Google Scholar] [CrossRef]
- Verma, V.; Malik, A.; Batra, I. Analyzing and Classifying Malware Types on Windows Platform using an Ensemble Machine Learning Approach. Int. J. Comput. Sci. 2024, 20, 312. [Google Scholar]
- Khalid, A.; Hashmi, A.; Kiani, A. Integrating Design Thinking into Software Process Improvement. In Proceedings of the 2024 International Conference on Emerging Trends in Networks and Computer Communications (ETNCC), Windhoek, Namibia, 23–25 July 2024. [Google Scholar]
- Ali, S.; Hafeez, Y.; Humayun, M.; Jhanjhi, N. Towards aspect based requirements mining for trace retrieval of component-based software management process in globally distributed environment. Innov. Syst. Softw. Eng. 2022, 23, 151–165. [Google Scholar] [CrossRef]
- Singh, T.; Solanki, A.; Sharma, S.; Jhanjhi, N. Grey Wolf Optimization-Based CNN-LSTM Network for the Prediction of Energy Consumption in Smart Home Environment. IEEE Access 2023, 11, 114917–114935. [Google Scholar] [CrossRef]
- Nanglia, S.; Ahmad, M.; Khan, F.; Jhanjhi, N. An enhanced Predictive heterogeneous ensemble model for breast cancer prediction. Biomed. Signal Process. Control 2022, 72, 103279. [Google Scholar] [CrossRef]
- Rahim, A.; Hayat, Z.; Abbas, M.; Rahim, A. Software defect prediction with naïve Bayes classifier. In Proceedings of the 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), Islamabad, Pakistan, 12–16 January 2021; pp. 293–297. [Google Scholar]
- Ray, S.K.; Sinha, R.; Ray, S.K. A smartphone-based post-disaster management mechanism using WIFI tethering. In Proceedings of the 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), Auckland, New Zealand, 15–17 June 2015; pp. 966–971. [Google Scholar] [CrossRef]
- Mehta, A.; Kaur, N.; Kaur, A. An Ensemble Voting Classification Approach for Software defects prediction. Int. J. Inf. Technol. 2025, 17, 1813–1820. [Google Scholar] [CrossRef]
- Mehta, A.; Kaur, A.; Kaur, N. Optimizing Software Fault Prediction using Voting Ensembles in Class Imbalance Scenarios. Int. J. Perform. Eng. 2024, 20, 676–687. [Google Scholar] [CrossRef]
- Lee, S.; Abdullah, A.; Jhanjhi, N.Z. A review on honeypot-based botnet detection models for smart factory. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 418–435. [Google Scholar] [CrossRef]
- Azeem, M.; Ullah, A.; Ashraf, H.; Jhanjhi, N.; Humayun, M.; Aljahdali, S.; Tabbakh, T.A. FoG-Oriented Secure and Lightweight Data Aggregation in IoMT. IEEE Access 2021, 9, 111072–111082. [Google Scholar] [CrossRef]
- Aldughayfiq, B.; Ashfaq, F.; Jhanjhi, N.Z.; Humayun, M. YOLO-Based Deep Learning Model for Pressure Ulcer Detection and Classification. Healthcare 2023, 11, 1222. [Google Scholar] [CrossRef]
Algorithm | Accuracy | Precision (Weighted) | Recall (Weighted) | F1 Score (Weighted) |
---|---|---|---|---|
Bayes Net | 74.00% | 0.8255 | 0.740 | 0.7763 |
C4.5 Decision Tree | 80.67% | 0.8118 | 0.8067 | 0.8092 |
Multilayer Perceptron | 82.67% | 0.8267 | 0.8267 | 0.8267 |
Random Forest | 88.00% | 0.8420 | 0.880 | 0.8549 |
Ensemble model | 90.00% | 0.8800 | 0.90 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehta, A.; Batra, I.; Fergina, A. Boosting Software Fault Prediction Accuracy with Ensemble Learning. Eng. Proc. 2025, 107, 63. https://doi.org/10.3390/engproc2025107063
Mehta A, Batra I, Fergina A. Boosting Software Fault Prediction Accuracy with Ensemble Learning. Engineering Proceedings. 2025; 107(1):63. https://doi.org/10.3390/engproc2025107063
Chicago/Turabian StyleMehta, Ashu, Isha Batra, and Anggun Fergina. 2025. "Boosting Software Fault Prediction Accuracy with Ensemble Learning" Engineering Proceedings 107, no. 1: 63. https://doi.org/10.3390/engproc2025107063
APA StyleMehta, A., Batra, I., & Fergina, A. (2025). Boosting Software Fault Prediction Accuracy with Ensemble Learning. Engineering Proceedings, 107(1), 63. https://doi.org/10.3390/engproc2025107063