Prediction of Torque Arm Fatigue Life by Fuzzy Logic Method †
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yarrow, N.S.; Milburn, N.F.; Burgess, M.J. Vehicle Suspension Torque Arm Assembly. U.S. Patent 5509684A, 21 August 1995. [Google Scholar]
- Raider, J.E. Heavy Vehicle Suspension with Unitized Narrow Profile Bolster Beam Hanger Assembly and Outboard Spring Mount. U.S. Patent 4718692, 7 October 1986. [Google Scholar]
- Sampson, D.J.M.; Cebon, D. Achievable Roll Stability of Heavy Road Vehicles. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2003, 217, 269–287. [Google Scholar] [CrossRef]
- Vu, V.T.; Sename, O.; Dugard, L.; Gáspár, P. Enhancing Roll Stability of Heavy Vehicle by LQR Active Anti-Roll Bar Control Using Electronic Servo-Valve Hydraulic Actuators. Veh. Syst. Dyn. 2017, 55, 1405–1429. [Google Scholar] [CrossRef]
- Duraisivam, S.; Suresh, P.; Saravanan, A.; Jamuna, E. Static, fatigue and dynamic analysis of automobile torque arm using FEM. AIP Conf. Proc. 2021, 2408, 020012. [Google Scholar] [CrossRef]
- Raičević, N.; Grbović, A.; Kastratović, G.; Vidanović, N.; Sedmak, A. Fatigue life prediction of topologically optimized torque link adjusted for additive manufacturing. Int. J. Fatigue 2023, 176, 107907. [Google Scholar] [CrossRef]
- Yan, S.; Tao, F.; Jia, C.; Liu, G. Fatigue Life Prediction and Structural Optimization on Torsion Shaft of Tracked Vehicle, In Proceedings of the 2017 7th International Conference on Manufacturing Science and Engineering (ICMSE 2017), Zhuhai, China, 11–12 March 2017. [CrossRef]
- Zadeh, L.A. Fuzzy Sets. Information and Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Swathi, M. Fuzzy Logic. Int. J. Innov. Res. Inf. Secur. 2023, 9, 147–152. [Google Scholar] [CrossRef]
- Chrysafiadi, K. Comparative Discussion. In Fuzzy Logic-Based Software Systems. Learning and Analytics in Intelligent Systems; Springer: Cham, Switzerland, 2023; Volume 34, pp. 131–139. [Google Scholar] [CrossRef]
- Fletcher, K.F.B. Fuzzy Logic and Markov Kernels. arXiv 2023, arXiv:2303.03725. [Google Scholar] [CrossRef]
- Chrysafiadi, K. Fuzzy Logic. In Fuzzy Logic-Based Software Systems. Learning and Analytics in Intelligent Systems; Springer: Cham, Switzerland, 2023; Volume 34, pp. 2–24. [Google Scholar] [CrossRef]
- Tri, N.M.; Khoat, N.N. Research on a Sugeno Fuzzy Logic Controller Compared to a Mamdani-Based PI-Type Fuzzy Logic Inference Model. Univ. Danang—J. Sci. Technol. 2022, 20, 57–62. [Google Scholar] [CrossRef]
- Firdausy, M.A.; Utami, E.; Hartanto, A.D. Comparison Analysis of Fuzzy Sugeno & Fuzzy Mamdani for Household Lights. In Proceeding of the International Conference on Information Science and Technology Innovation (ICoSTEC), Batam, Indonesia, 3–4 February 2022; pp. 30–34. [Google Scholar]
- Zhong, F.; Zhong, Y.-N. Application Research of Mamdani and Sugeno Type Fuzzy Inference. J. Hubei Univ. Technol. 2005, 20, 28–30. Available online: https://wk.baidu.com/view/b1f58766be23482fb4da4c6c (accessed on 5 September 2025). (In Chinese).
- Marbun, M. Analysis of Application of Fuzzy Grid Partition on Mamdani Method Fuzzy Inference System. JUSIKOM PRIMA 2022, 6, 68–74. [Google Scholar] [CrossRef]
- Uppalapati, S.; Kaur, D. Design and Implementation of a Mamdani Fuzzy Inference System on an FPGA. In Proceedings of the NAFIPS 2009—2009 Annual Meeting of the North American Fuzzy Information Processing Society, Cincinnati, OH, USA, 14–17 June 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Hamzah, M.H.M.; Thamrin, N.M.; Tajjudin, M. Robotic Arm Position Control Using Mamdani Fuzzy Logic on Arduino Microcontroller. J. Mech. Eng. 2022, 19, 235–255. [Google Scholar] [CrossRef]
- Kizito, A.E.; Ojei, E.; Okpor, M.D. A Fuzzy Logic-Based Automobile Fault Detection System Using Mamdani Algorithm. Int. J. Sci. Res. Manag. 2024, 12, 1081–1093. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baybaş, C.; Acarer, M.; Doğaner, F. Prediction of Torque Arm Fatigue Life by Fuzzy Logic Method. Eng. Proc. 2025, 104, 83. https://doi.org/10.3390/engproc2025104083
Baybaş C, Acarer M, Doğaner F. Prediction of Torque Arm Fatigue Life by Fuzzy Logic Method. Engineering Proceedings. 2025; 104(1):83. https://doi.org/10.3390/engproc2025104083
Chicago/Turabian StyleBaybaş, Caner, Mustafa Acarer, and Fevzi Doğaner. 2025. "Prediction of Torque Arm Fatigue Life by Fuzzy Logic Method" Engineering Proceedings 104, no. 1: 83. https://doi.org/10.3390/engproc2025104083
APA StyleBaybaş, C., Acarer, M., & Doğaner, F. (2025). Prediction of Torque Arm Fatigue Life by Fuzzy Logic Method. Engineering Proceedings, 104(1), 83. https://doi.org/10.3390/engproc2025104083