Kolmogorov–Arnold Networks for System Identification of First- and Second-Order Dynamic Systems †
Abstract
1. Introduction
2. Methods
2.1. Kolmogorov–Arnold Networks as an Approximation Tool
2.2. Kolmogorov–Arnold Networks for System Identification
2.2.1. Datasets
- First-order system: Modeled by the transfer function with a time-domain transient characteristic of the kind . We test for the following parameter values: .
- Second-order underdamped system: Modeled by the transfer function with a time-domain transient characteristic of the kind . We test for the following values: .
2.2.2. Network Architecture
2.2.3. Training Procedure
- Loss function: We use mean squared error (MSE) between the predicted output and the true system response.
- Optimizer: LBFGS [15] with a learning rate of 0.1.
- Regularization coefficient: For both first- and second-order systems, we use regularization coefficient lamb = 0.0001, which corresponds to the λ in the following equation:And controls the overall regularization magnitude as follows:
- Grid extension: We start at grid size 3 and employ grid extension between trainings as suggested in the original KAN paper [6] to deal with loss plateaus and improve accuracy.
- Batch size: We train on the whole dataset.
2.2.4. Evaluation Metrics
3. Results
Comparison with MLPs and ARX Kolmogorov–Arnold Networks for System Identification
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
KAN | Kolmogorov–Arnold neural network |
LBFGS | Limited-Memory Broyden–Fletcher–Goldfarb–Shanno algorithm |
MSE | mean squared error |
MLP | multilayer perceptron |
RMSE | root mean square error |
References
- Zadeh, L.A. On the identification problem. IRE Trans. Circuits Theory 1956, 3, 277–281. [Google Scholar] [CrossRef]
- Pillonetto, G.; Chen, T.; Chiuso, A.; De Nicolao, G.; Ljung, L. Regularized System Identification: Learning Dynamic Models from Data; Communications and Control Engineering Series; Springer International Publishing AG: Cham, Switzerland, 2022. [Google Scholar]
- Lennart, L. System Identification: Theory for the User, 2nd ed.; Prentice Hall Information and System Sciences Series; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Gianluigi, P.; Aravkin, A.; Gedon, D.; Ljung, L.; Ribeiro, A.H.; Schön, T.B. Deep Net-works for System Identification: A Survey. arXiv 2023, arXiv:2301.12832. [Google Scholar] [CrossRef]
- Chen, S.; Billings, S.A.; Grant, P.M. Non-Linear System Identification Using Neural Networks. Int. J. Control. 1990, 51, 1191–1214. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Vaidya, S.; Ruehle, F.; Halverson, J.; Soljačić, M.; Hou, H.Y.; Tegmark, M. KAN: Kolmogorov-Arnold Networks. arXiv 2025, arXiv:2404.19756. [Google Scholar] [CrossRef]
- Ziemann, I.; Tsiamis, A.; Lee, B.; Jedra, Y.; Matni, N.; Pappas, G.J. A Tutorial on the Non-Asymptotic Theory of System Identification. arXiv 2023, arXiv:2309.03873. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Haywood-Alexander, M.; Arcieri, G.; Kamariotis, A.; Chatzi, E. Response Estimation and System Identification of Dynamical Systems via Physics-Informed Neural Networks. arXiv 2024, arXiv:2410.01340. [Google Scholar] [CrossRef] [PubMed]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer Feedforward Networks Are Universal Approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Kolmogorov, A.N.; Arnol’d, V.; Boltjanskiĭ, V.; Efimov, N.; Èskin, G.; Koteljanskiĭ, D.; Krasovskiĭ, N.; Men’šov, D.; Portnov, I.; Ryškov, S.; et al. On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. In Doklady Akademii Nauk; Russian Academy of Sciences: Moscow, Russia, 1957; Volume 114, pp. 953–956. [Google Scholar]
- Werbos, P.J. ‘Backpropagation through Time: What It Does and How to Do It. Proc. IEEE 1990, 78, 1550–1560. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, P.; Wang, Y.; Matusik, W.; Tegmark, M. KAN 2.0: Kolmogorov-Arnold Networks Meet Science. arXiv 2024, arXiv:2408.10205. [Google Scholar] [CrossRef]
- Marmarelis, V.Z. Nonlinear Dynamic, Appendix II: Gaussian White Noise. In Modeling of Physiological Systems, 1st ed.; Wiley: Hoboken, NJ, USA, 2004; pp. 499–501. [Google Scholar] [CrossRef]
- Liu, D.C.; Nocedal, J. On the Limited Memory BFGS Method for Large Scale Optimization. Math. Program. 1989, 45, 503–528. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar] [CrossRef]
System Parameters | Test Loss (Noise-Free and with Noise) | Parameter Recovery (Noise-Free) |
---|---|---|
and | 1.99999983330918 | |
and | ||
and |
System Parameters | Test Loss | Parameter Recovery |
---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiparova, L.; Popov, V. Kolmogorov–Arnold Networks for System Identification of First- and Second-Order Dynamic Systems. Eng. Proc. 2025, 100, 100059. https://doi.org/10.3390/engproc2025100059
Chiparova L, Popov V. Kolmogorov–Arnold Networks for System Identification of First- and Second-Order Dynamic Systems. Engineering Proceedings. 2025; 100(1):100059. https://doi.org/10.3390/engproc2025100059
Chicago/Turabian StyleChiparova, Lily, and Vasil Popov. 2025. "Kolmogorov–Arnold Networks for System Identification of First- and Second-Order Dynamic Systems" Engineering Proceedings 100, no. 1: 100059. https://doi.org/10.3390/engproc2025100059
APA StyleChiparova, L., & Popov, V. (2025). Kolmogorov–Arnold Networks for System Identification of First- and Second-Order Dynamic Systems. Engineering Proceedings, 100(1), 100059. https://doi.org/10.3390/engproc2025100059