Smart Seismocardiography: A Machine Learning Approach for Automatic Data Processing †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor and Signal Conditioning
2.2. Measurement Protocol
2.3. SCG Signal Pre-Processing
2.4. K-Means Algorithm for SCG Clustering
3. Results
4. Discussion
4.1. Discussion
4.2. Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ahmad, F.B.; Anderson, R.N. The Leading Causes of Death in the US for 2020. JAMA 2021, 325, 1829–1830. [Google Scholar] [CrossRef] [PubMed]
- Taebi, A.; Solar, B.E.; Bomar, A.J.; Sandler, R.H.; Mansy, H.A. Recent advances in seismocardiography. Vibration 2019, 2, 64–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanetti, J.M.; Tavakolian, K. Seismocardiography: Past, present and future. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013. [Google Scholar]
- Gamage, P.T.; Azad, M.K.; Taebi, A.; Sandler, R.H.; Mansy, H.A. Clustering seismocardiographic events using unsupervised machine learning. In Proceedings of the 2018 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia, PA, USA, 1 December 2018. [Google Scholar]
- Ha, T.; Tran, J.; Liu, S.; Jang, H.; Jeong, H.; Mitbander, R.; Lu, N. A Chest-Laminated Ultrathin and Stretchable E-Tattoo for the Measurement of Electrocardiogram, Seismocardiogram, and Cardiac Time Intervals. Adv. Sci. Lett. 2019, 6, 1900290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eyvazi-Hesar, M.; Khan, D.; Seyedsadrkhani, N.S.; Ingebrandt, S. Contactless, Battery-free, and Stretchable Wearable for Continuous Recording of Seismocardiograms. ACS Appl. Electron 2020, 3, 11–20. [Google Scholar] [CrossRef]
- Kobayashi, M.; Ikari, T.; Kurose, S.; Igasaki, T. Heartbeat interval monitoring by PZT/PZT flexible piezoelectric film sensor. In Proceedings of the 2015 IEEE International Ultrasonics Symposium (IUS), Taipei, Taiwan, 21–24 October 2015; pp. 1–3. [Google Scholar]
- Makino, H.; Nakatsuma, K.; Igasaki, T.; Kobayashi, M. Biological Signal Measurements for Automatic Driving System by PZT/PZT Sol-Gel Composite. In Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; pp. 2628–2630. [Google Scholar]
- Anwar, T.; Zubair, M.; Rahman, M.D.; Sakib, N.; Kabir, M.A.U.; Faruk, T.; Islam, M.K. Design and Development of a Portable Recording System for Simultaneous Acquisition of SCG and ECG Signals. In Proceedings of the 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), Dhaka, Bangladesh, 3–5 May 2019. [Google Scholar]
- Bifulco, P.; Gargiulo, G.D.; d’Angelo, G.; Liccardo, A.; Romano, M.; Clemente, F.; Romano, M. Monitoring of respiration, seismocardiogram and heart sounds by a PVDF piezo film sensor. Measurement 2014, 11, 786–789. [Google Scholar]
- Martin, R.M. Piezoelectricity. Phys. Rev. B Condens. Matter 1972, 5, 1607. [Google Scholar] [CrossRef]
- Choudhary, T.; Sharma, L.N.; Bhuyan, M.K. Automatic detection of aortic valve opening using seismocardiography in healthy individuals. IEEE J. Biomed 2018, 23, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Bozhenko, B.S. Seismocardiography—A new method in the study of functional conditions of the heart. Ter. Arkhiv 1961, 33, 55–64. [Google Scholar]
- Mafi, M. Signal Processing Methods for Heart Rate Detection Using the Seismocardiogram. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2016. [Google Scholar]
- Thakkar, H.K.; Sahoo, P.K. Towards automatic and fast annotation of seismocardiogram signals using machine learning. IEEE Sens. J 2019, 20, 2578–2589. [Google Scholar] [CrossRef]
- Chen, C.H.; Lin, W.Y.; Lee, M.Y. The Applications of K-Means Clustering and Dynamic Time Warping Average in Seismocardiography Template Generation. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; pp. 1000–1007. [Google Scholar]
- Shafiq, G.; Tatinati, S.; Veluvolu, K.C. Automatic annotation of peaks in seismocardiogram for systolic time intervals. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016. [Google Scholar]
- Ghosh, P.; Azam, S.; Jonkman, M.; Karim, A.; Shamrat, F.J.M.; Ignatious, E.; De Boer, F. Efficient Prediction of Cardiovascular Disease Using Machine Learning Algorithms With Relief and LASSO Feature Selection Techniques. IEEE Access 2021, 9, 19304–19326. [Google Scholar] [CrossRef]
- Al-Absi, H.R.; Refaee, M.A.; Rehman, A.U.; Islam, M.T.; Belhaouari, S.B.; Alam, T. Risk Factors and Comorbidities Associated to Cardiovascular Disease in Qatar: A Machine Learning Based Case-Control Study. IEEE Access 2021, 9, 29929–29941. [Google Scholar] [CrossRef]
- Solar, B.A. Machine Learning Approach to Assess the Separation of Seismocardiographic Signals by Respiration. Bachelor’s Thesis, University of Central Florida, Orlando, FL, USA, 2018. [Google Scholar]
- Jain, P.K.; Tiwari, A.K. An algorithm for automatic segmentation of heart sound signal acquired using seismocardiography. In Proceedings of the 2016 International Conference on Systems in Medicine and Biology (ICSMB), Kharagpur, India, 4–7 January 2016; pp. 157–161. [Google Scholar]
- Rana, M.M.; Choi, B.J. Least Mean Fourth Algorithm for Seismocardiography Signal Detections. In Proceedings of the 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Suzhou, China, 29 July–2 August 2019. [Google Scholar]
- Choudhary, T.; Sharma, L.N.; Bhuyan, M.K. Standalone heartbeat extraction in SCG signal using variational mode decomposition. In Proceedings of the 2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 22–24 March 2018; pp. 1–4. [Google Scholar]
- Diaphragm, P. CEB-27D44; CUI Devices: Lake Oswego, OR, USA, 2020. [Google Scholar]
- Bartolome, E. Signal conditioning for piezoelectric sensors. Tex. Instruments Analog. Appl. J. 2010, 10, 24–31. [Google Scholar]
- Wang, Z.; Zhou, Y.; Li, G. Anomaly Detection by Using Streaming K-Means and Batch K-Means. In Proceedings of the 2020 5th IEEE International Conference on Big Data Analytics (ICBDA), Xiamen, China, 8–11 May 2020; Volume 5, pp. 11–17. [Google Scholar]
- Esteves, R.M.; Hacker, T.; Rong, C. Competitive K-Means, a New Accurate and Distributed K-Means Algorithm for Large Datasets. In Proceedings of the 2013 IEEE 5th International Conference on Cloud Computing Technology and Science, Bristol, UK, 2–5 December 2013; Volume 5, pp. 17–24. [Google Scholar]
- Banerjee, S.; Choudhary, A.; Pal, S. Empirical evaluation of K-Means, Bisecting K-Means, Fuzzy C-Means and Genetic K-Means clustering algorithms. In Proceedings of the 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), Dhaka, Bangladesh, 19–20 December 2015; pp. 168–172. [Google Scholar]
SCG Event | Cardiac Mechanical Process | SCG Event | Cardiac Mechanical Process |
---|---|---|---|
AS | Atrial systole | RE | Rapid ventricular ejection |
MC | Mitral valve closure | PE | Peak ventricular ejection |
IM | Isovolumetric movement | AC | Aortic valve closure |
AO | Aortic valve opening | MO | Mitral valve opening |
IC | Isotonic contraction | RF | Rapid ventricular filling |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Rico, O.Y.; Ramírez-Chavarría, R.G. Smart Seismocardiography: A Machine Learning Approach for Automatic Data Processing. Eng. Proc. 2021, 10, 24. https://doi.org/10.3390/ecsa-8-11325
López-Rico OY, Ramírez-Chavarría RG. Smart Seismocardiography: A Machine Learning Approach for Automatic Data Processing. Engineering Proceedings. 2021; 10(1):24. https://doi.org/10.3390/ecsa-8-11325
Chicago/Turabian StyleLópez-Rico, Omar Y., and Roberto G. Ramírez-Chavarría. 2021. "Smart Seismocardiography: A Machine Learning Approach for Automatic Data Processing" Engineering Proceedings 10, no. 1: 24. https://doi.org/10.3390/ecsa-8-11325
APA StyleLópez-Rico, O. Y., & Ramírez-Chavarría, R. G. (2021). Smart Seismocardiography: A Machine Learning Approach for Automatic Data Processing. Engineering Proceedings, 10(1), 24. https://doi.org/10.3390/ecsa-8-11325