A Computational Study on Removal of Heavy Metal Pollutants Cr+3, +6, Ni+2, Cu+2, Zn+2, As+3, Hg+2, and Pb+2 from Soil Using Tricatecholate Protochelin Siderophore: A DFT Study †
Abstract
1. Introduction
2. Computational Methodology
3. Results and Discussion
3.1. Determination of Stable Multiplicity State of Metals
3.2. Stable Geometries, Interaction Energies, and Gibbs Free Energy Calculation
3.3. Electrostatic Potential (ESP) Analysis
3.4. Frontier Molecular Orbitals (FMO) Analysis
3.5. Density of States (DOS) Analysis
3.6. Non-Covalent Interaction (NCI) Analysis
3.7. RMSD (Stability) Analysis of Protochelin and Metal–Protochelin Complexes via AIMD Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nyiramigisha, P.; Komariah, S. Harmful Impacts of Heavy Metal Contamination in the Soil and Crops Grown Around Dumpsites. Rev. Agric. Sci. 2021, 9, 271–282. [Google Scholar] [CrossRef]
- Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L. Pollution and health: A progress update. Lancet Planet. Health 2022, 6, e535–e547. [Google Scholar] [CrossRef] [PubMed]
- Debnath, A.; Singh, P.K.; Sharma, Y.C. Metallic contamination of global river sediments and latest developments for their remediation. J. Environ. Manag. 2021, 298, 113378. [Google Scholar] [CrossRef] [PubMed]
- ur Rehman, K.; Bukhari, S.M.; Andleeb, S.; Mahmood, A.; Erinle, K.O.; Naeem, M.M.; Imran, Q. Ecological risk assessment of heavy metals in vegetables irrigated with groundwater and wastewater: The particular case of Sahiwal district in Pakistan. Agric. Water Manag. 2019, 226, 105816. [Google Scholar] [CrossRef]
- Ortega, L.M.; Lebrun, R.; Blais, J.-F.; Hausler, R.; Drogui, P. Effectiveness of soil washing, nanofiltration and electrochemical treatment for the recovery of metal ions coming from a contaminated soil. Water Res. 2008, 42, 1943–1952. [Google Scholar] [CrossRef]
- Zheng, X.; Li, Q.; Wang, Z.; Chen, M. Remediation of heavy metals contaminated soil by enhanced electrokinetic technology: A review. Arab. J. Chem. 2024, 17, 105773. [Google Scholar] [CrossRef]
- Riaz, U.; Athar, T.; Mustafa, U.; Iqbal, R. Economic feasibility of phytoremediation. In Phytoremediation; Elsevier: Amsterdam, The Netherlands, 2022; pp. 481–502. [Google Scholar]
- Mukherjee, P.; Dutta, J.; Roy, M.; Thakur, T.K.; Mitra, A. Plant growth-promoting rhizobacterial secondary metabolites in augmenting heavy metal (loid) phytoremediation: An integrated green in situ ecorestorative technology. Environ. Sci. Pollut. Res. 2024, 31, 55851–55894. [Google Scholar] [CrossRef]
- Sigel, H. Amino Acids and Derivatives as Ambivalent Ligands. In Metal Ions in Biological Systems; CRC Press: Boca Raton, FL, USA, 1979. [Google Scholar]
- Swarnalatha, G.V.; Goudar, V.; Reddy, E.C.R.G.S.; Al Tawaha, A.R.M.; Sayyed, R. Siderophores and their applications in sustainable management of plant diseases. In Secondary Metabolites and Volatiles of PGPR in Plant-Growth Promotion; Springer: Cham, Switzerland, 2022; pp. 289–302. [Google Scholar]
- Harrington, J.M.; Bargar, J.R.; Jarzecki, A.A.; Roberts, J.G.; Sombers, L.A.; Duckworth, O.W. Trace metal complexation by the triscatecholate siderophore protochelin: Structure and stability. Biometals 2012, 25, 393–412. [Google Scholar] [CrossRef]
- Rajkumar, M.; Ae, N.; Prasad, M.N.V.; Freitas, H. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 2010, 28, 142–149. [Google Scholar] [CrossRef]
- Cornish, A.S.; Page, W.J.J.B. Production of the triacetecholate siderophore protochelin by Azotobacter vinelandii. BioMetals 1995, 8, 332–338. [Google Scholar] [CrossRef]
- Timofeeva, A.M.; Galyamova, M.R.; Sedykh, S.E. Bacterial siderophores: Classification, biosynthesis, perspectives of use in agriculture. Plants 2022, 11, 3065. [Google Scholar] [CrossRef] [PubMed]
- Mohanapriya, E.; Elangovan, S.; Kanagathara, N.; Marchewka, M.; Janczak, J.; Revathi, P. Density functional theory calculations, structural and spectroscopic characterization, and solvent-dependent HOMO-LUMO studies of 2-nitro-4-methylanilinium benzenesulfonate. J. Mol. Struct. 2024, 1317, 139147. [Google Scholar] [CrossRef]
- Janesko, B.G. Projected Hybrid Density Functionals: Method and Application to Core Electron Ionization. J. Chem. Theory Comput. 2023, 19, 837–847. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Ren, J.; Zheng, L.; Su, Y.; Meng, P.; Zhou, Q.; Zeng, H.; Zhang, T.; Yu, H. Competitive adsorption of Cd (II), Pb (II) and Cu (II) ions from acid mine drainage with zero-valent iron/phosphoric titanium dioxide: XPS qualitative analyses and DFT quantitative calculations. Chem. Eng. J. 2022, 445, 136778. [Google Scholar] [CrossRef]
- Harvey, J.N. DFT Computation of Relative Spin-State Energetics of Transition Metal Compounds. In Principles and Applications of Density Functional Theory in Inorganic Chemistry I; Kaltsoyannis, N., McGrady, J.E., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 151–184. [Google Scholar]
- Gomes, A.F.R.; Almeida, M.C.; Sousa, E.; Resende, D.I.S.P. Siderophores and metallophores: Metal complexation weapons to fight environmental pollution. Sci. Total Environ. 2024, 932, 173044. [Google Scholar] [CrossRef]
- Xiao, W.; Zhang, Y.; Li, T.; Chen, B.; Wang, H.; He, Z.; Yang, X.J. Reduction kinetics of hexavalent chromium in soils and its correlation with soil properties. J. Environ. Qual. 2012, 41, 1452–1458. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Y.; Yu, X.; Li, L.; Zhang, X.; Lu, Z.; Lin, J.; Yang, X.; Huang, Y. Removal of Cr(iii)/Cr(vi) from wastewater using defective porous boron nitride: A DFT study. Inorg. Chem. Front. 2018, 5, 1933–1940. [Google Scholar] [CrossRef]
- Moreno, M.; Zacarias, A.; Porzel, A.; Velasquez, L.; Gonzalez, G.; Alegría-Arcos, M.; Gonzalez-Nilo, F.; Gross, E.K. U. IR and NMR spectroscopic correlation of enterobactin by DFT. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 198, 264–277. [Google Scholar] [CrossRef]
- Moreno, M.; Zacarias, A.; Velasquez, L.; Gonzalez, G.; Alegría-Arcos, M.; Gonzalez-Nilo, F.; Gross, E.K.U. Experimental and theoretical structural/spectroscopical correlation of enterobactin and catecholamide. Data Brief 2018, 20, 2054–2064. [Google Scholar] [CrossRef]
- Kraepiel, A.; Bellenger, J.; Wichard, T.; Morel, F.M.J.B. Multiple roles of siderophores in free-living nitrogen-fixing bacteria. BioMetals 2009, 22, 573–581. [Google Scholar] [CrossRef]
- Kraka, E.; Setiawan, D.; Cremer, D. Re-evaluation of the bond length–bond strength rule: The stronger bond is not always the shorter bond. J. Comput. Chem. 2016, 37, 130–142. [Google Scholar] [CrossRef]
- Eyube, E.; Onate, C.; Omugbe, E.; Nwabueze, C.J.C.P. Theoretical prediction of Gibbs free energy and specific heat capacity of gaseous molecules. Chem. Physcies 2022, 560, 111572. [Google Scholar] [CrossRef]
- Bhunia, K.; Chandra, M.; Sharma, S.K.; Pradhan, D.; Kim, S.-J. A critical review on transition metal phosphide based catalyst for electrochemical hydrogen evolution reaction: Gibbs free energy, composition, stability, and true identity of active site. Coord. Chem. Rev. 2023, 478, 214956. [Google Scholar] [CrossRef]
- Guo, M.; Ji, M.; Cui, W. Theoretical investigation of HER/OER/ORR catalytic activity of single atom-decorated graphyne by DFT and comparative DOS analyses. Appl. Surf. Sci. 2022, 592, 153237. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
| Metal–Protochelin Complexes | Multiplicity | Overall Charge | Bond Length protochelin–M (Å) | Interaction Energy (kcal/mol) | Gibbs Free Energy (kcal/mol) |
|---|---|---|---|---|---|
| Fe–protochelin | Sextet | −3 | 1.90 | −216.37 | −331.91 |
| Cr–protochelin | Quartet | −3 | 1.95 | −288.93 | −388.06 |
| Cr–protochelin | Singlet | 0 | 1.85 | −2129.87 | −1968.32 |
| Cu–protochelin | Doublet | −4 | 1.99 | −133.61 | −256.06 |
| Zn–protochelin | Singlet | −4 | 2.01 | −115.07 | −238.01 |
| Ni–protochelin | Triplet | −4 | 1.90 | −194.09 | −319.04 |
| As–protochelin | Singlet | −3 | 1.87 | −387.62 | −514.78 |
| Hg–protochelin | Singlet | −4 | 2.28 | −109.87 | −253.14 |
| Pb–protochelin | Singlet | −4 | 2.48 | −125.74 | −319.04 |
| Complexes | Charge | EHOMO (eV) | ELUMO (eV) | Energy gap (eV) | μ (D) |
|---|---|---|---|---|---|
| Protochelin | −6 | 5.195473 | 12.39452 | 7.199048 | 4.454484 |
| Fe–protochelin | −3 | −4.839 | −0.59593 | 4.243074 | 13.607181 |
| Cr–protochelin | −3 | −4.55464 | −1.11621 | 3.438433 | 14.676050 |
| Cr–protochelin | 0 | −5.99712 | −4.27192 | 1.725203 | 8.430779 |
| Cu–protochelin | −4 | −4.33342 | −0.09034 | 4.243074 | 20.067675 |
| Zn–protochelin | −4 | −4.24199 | 0.02449 | 4.266475 | 17.615736 |
| Ni–protochelin | −4 | −4.24743 | −0.47293 | 3.774493 | 21.218394 |
| As–protochelin | −3 | −3.94837 | −0.61062 | 3.33775 | 17.198189 |
| Hg–protochelin | −4 | −4.25913 | −0.08408 | 4.175045 | 12.495942 |
| Pb–protochelin | −4 | −4.22865 | 0.073199 | 4.30185 | 11.835909 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, H.; Khalid, H. A Computational Study on Removal of Heavy Metal Pollutants Cr+3, +6, Ni+2, Cu+2, Zn+2, As+3, Hg+2, and Pb+2 from Soil Using Tricatecholate Protochelin Siderophore: A DFT Study. Chem. Proc. 2025, 18, 74. https://doi.org/10.3390/ecsoc-29-26747
Khan H, Khalid H. A Computational Study on Removal of Heavy Metal Pollutants Cr+3, +6, Ni+2, Cu+2, Zn+2, As+3, Hg+2, and Pb+2 from Soil Using Tricatecholate Protochelin Siderophore: A DFT Study. Chemistry Proceedings. 2025; 18(1):74. https://doi.org/10.3390/ecsoc-29-26747
Chicago/Turabian StyleKhan, Hamza, and Hania Khalid. 2025. "A Computational Study on Removal of Heavy Metal Pollutants Cr+3, +6, Ni+2, Cu+2, Zn+2, As+3, Hg+2, and Pb+2 from Soil Using Tricatecholate Protochelin Siderophore: A DFT Study" Chemistry Proceedings 18, no. 1: 74. https://doi.org/10.3390/ecsoc-29-26747
APA StyleKhan, H., & Khalid, H. (2025). A Computational Study on Removal of Heavy Metal Pollutants Cr+3, +6, Ni+2, Cu+2, Zn+2, As+3, Hg+2, and Pb+2 from Soil Using Tricatecholate Protochelin Siderophore: A DFT Study. Chemistry Proceedings, 18(1), 74. https://doi.org/10.3390/ecsoc-29-26747
