Virtual Screening of Natural Compounds as Potential SARS-CoV-2 Main Protease Inhibitors: A Molecular Docking and Molecular Dynamics Simulation Guided Approach †
Abstract
:1. Introduction
2. Result and Discussion
2.1. Docking Studies
2.2. MD Simulation Studies
2.3. Binding Free Energy Calculations of the Complexes Using MM-GBSA Analysis
3. Conclusions
4. Methodology
4.1. Docking Methodology
4.2. Molecular Dynamics (MD) Simulation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumari, M.; Lu, R.-M.; Li, M.-C.; Huang, J.-L.; Hsu, F.-F.; Ko, S.-H.; Ke, F.-Y.; Su, S.-C.; Liang, K.-H.; Yuan, J.P.-Y.; et al. A Critical Overview of Current Progress for COVID-19: Development of Vaccines, Antiviral Drugs, and Therapeutic Antibodies. J. Biomed. Sci. 2022, 29, 68. [Google Scholar] [CrossRef] [PubMed]
- Kronenberger, T.; Laufer, S.A.; Pillaiyar, T. COVID-19 Therapeutics: Small-Molecule Drug Development Targeting SARS-CoV-2 Main Protease. Drug Discov. Today 2023, 28, 103579. [Google Scholar] [CrossRef] [PubMed]
- Rani, I.; Kalsi, A.; Kaur, G.; Sharma, P.; Gupta, S.; Gautam, R.K.; Chopra, H.; Bibi, S.; Ahmad, S.U.; Singh, I.; et al. Modern Drug Discovery Applications for the Identification of Novel Candidates for COVID-19 Infections. Ann. Med. Surg. 2022, 80, 104125. [Google Scholar] [CrossRef] [PubMed]
- Das, A.P.; Agarwal, S.M. Recent Advances in the Area of Plant-Based Anti-Cancer Drug Discovery Using Computational Approaches. Mol. Divers. 2023, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Koes, D.R.; Baumgartner, M.P.; Camacho, C.J. Lessons Learned in Empirical Scoring with Smina from the CSAR 2011 Benchmarking Exercise. J. Chem. Inf. Model. 2013, 53, 1893–1904. [Google Scholar] [CrossRef] [PubMed]
- Kardile, R.A.; Sarkate, A.P.; Lokwani, D.K.; Tiwari, S.V.; Azad, R.; Thopate, S.R. Design, Synthesis, and Biological Evaluation of Novel Quinoline Derivatives as Small Molecule Mutant EGFR Inhibitors Targeting Resistance in NSCLC: In Vitro Screening and ADME Predictions. Eur. J. Med. Chem. 2023, 245, 114889. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.V.; Sarkate, A.P.; Lokwani, D.K.; Pansare, D.N.; Gattani, S.G.; Sheaikh, S.S.; Jain, S.P.; Bhandari, S.V. Explorations of Novel Pyridine-Pyrimidine Hybrid Phosphonate Derivatives as Aurora Kinase Inhibitors. Bioorganic Med. Chem. Lett. 2022, 67, 128747. [Google Scholar] [CrossRef] [PubMed]
- Thorat, N.M.; Khodade, V.S.; Ingale, A.P.; Lokwani, D.K.; Sarkate, A.P.; Thopate, S.R. Molecular Docking Studies and Application of 6-(1-Arylmethanamino)-2-Phenyl-4 H-Chromen-4-Ones as Potent Antibacterial Agents. Polycycl. Aromat. Compd. 2022, 1–14. [Google Scholar] [CrossRef]
- Sousa da Silva, A.W.; Vranken, W.F. ACPYPE—AnteChamber PYthon Parser interfacE. BMC Res. Notes 2012, 5, 367. [Google Scholar] [CrossRef]
- Valdés-Tresanco, M.S.; Valdés-Tresanco, M.E.; Valiente, P.A.; Moreno, E. gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. J. Chem. Theory Comput. 2021, 17, 6281–6291. [Google Scholar] [CrossRef] [PubMed]
Sr No | Compound ID | Docking Score | Ligand Efficacy | Free Binding Energy after Docking (Kcal/mol) |
---|---|---|---|---|
1 | ZINC000085626103 | −12.682 | −0.278 | −94.8 |
2 | ZINC000085569275 | −12.026 | −0.463 | −50.11 |
3 | ZINC000085625768 | −11.945 | −0.291 | −58.97 |
4 | ZINC000085488571 | −11.876 | −0.276 | −55.34 |
Compounds | Delta G Gas | Delta G Solv | Delta G Total |
---|---|---|---|
ZINC000085626103 | −108.43 ± 10.05 | 86.26 ±14.38 | −19.17 ± 17.54 |
ZINC000085625768 | −82.90 ± 8.99 | 44.61 ± 5.67 | −38.29 ± 5.84 |
ZINC000085488571 | −15.96 ± 15.38 | −9.87 ± 11.47 | −25.84 ± 5.74 |
ZINC000085569275 | −44.35 ± 11.83 | 23.79 ± 8.02 | −20.56 ± 5.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lokwani, D.K.; Chavan, S.R.; Sarkate, A.P.; Natarajan, P.M.; Umapathy, V.R.; Jain, S.P. Virtual Screening of Natural Compounds as Potential SARS-CoV-2 Main Protease Inhibitors: A Molecular Docking and Molecular Dynamics Simulation Guided Approach. Chem. Proc. 2023, 14, 85. https://doi.org/10.3390/ecsoc-27-16049
Lokwani DK, Chavan SR, Sarkate AP, Natarajan PM, Umapathy VR, Jain SP. Virtual Screening of Natural Compounds as Potential SARS-CoV-2 Main Protease Inhibitors: A Molecular Docking and Molecular Dynamics Simulation Guided Approach. Chemistry Proceedings. 2023; 14(1):85. https://doi.org/10.3390/ecsoc-27-16049
Chicago/Turabian StyleLokwani, Deepak K., Sangita R. Chavan, Aniket P. Sarkate, Prabhu M. Natarajan, Vidhya R. Umapathy, and Shirish P. Jain. 2023. "Virtual Screening of Natural Compounds as Potential SARS-CoV-2 Main Protease Inhibitors: A Molecular Docking and Molecular Dynamics Simulation Guided Approach" Chemistry Proceedings 14, no. 1: 85. https://doi.org/10.3390/ecsoc-27-16049
APA StyleLokwani, D. K., Chavan, S. R., Sarkate, A. P., Natarajan, P. M., Umapathy, V. R., & Jain, S. P. (2023). Virtual Screening of Natural Compounds as Potential SARS-CoV-2 Main Protease Inhibitors: A Molecular Docking and Molecular Dynamics Simulation Guided Approach. Chemistry Proceedings, 14(1), 85. https://doi.org/10.3390/ecsoc-27-16049