Hexa-Substituted Hybrid C60 Derivatives with Norbornadiene Fragments: Synthesis and Structure †
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
- Brown powder. 1H NMR, δ: 1.60 (m, 1H), 2.06 (m, 1H), 2.19 (m, 1H), 2.21 (m, 1H), 3.59 (m, 2H), 6.12 (m, 1H), 6.77 (m, 1H), 6.78 (m, 1H). 13C NMR, δ: 25.84, 27.31, 29.41, 29.49, 29.56, 29.83, 31.62, 32.92, 50.11, 50.28, 51.57, 51.99, 53.59, 63.14, 66.63, 66.81, 67.04, 67.26, 67.69, 68.05, 69.10, 69.65, 70.06, 70.29, 73.50, 73.73, 76.83, 77.08, 77.34, 133.21, 137.21, 137.33, 137.45, 137.62, 137.81, 138.18, 142.36, 142.51, 142.61, 143.31, 143.40, 143.55, 143.83, 144.39, 147.28, 147.70, 148.08, 148.28, 148.46, 148.93, 149.14, 149.48, 149.57, 154.68, 154.85, 154.99, 155.14, 158.92. MALDI–TOF, [M]– calcd. for C100H45ClO5 1361.3024, found 1361.3020.
- Brown powder. 1H NMR, δ: 1.62 (m, 2H), 1.71 (m, 1H), 1.99 (m, 2H), 2.07 (m, 1H), 3.02 (m, 2H), 3.52 (m, 2H), 6.13 (m, 1H), 6.76 (m, 2H). 13C NMR, δ: 22.96, 26.49, 28.15, 29.47, 29.93, 30.43, 30.62, 31.56, 32.10, 42.00, 50.34, 50.58, 50.87, 53.71, 60.47, 65.95, 67.73, 67.99, 68.16, 68.33, 68.58, 68.80, 73.61, 133.81, 134.00, 134.17, 134.44, 136.12, 136.32, 136.39, 136.48, 142.20, 142.26, 142.32, 143.84, 143.92, 143.99, 146.94, 147.00, 147.10, 147.16, 147.32, 147.50, 147.76, 147.86, 147.93, 148.07, 148.14, 148.42, 148.55, 148.92, 149.06, 149.21, 157.74. MALDI–TOF, [M]– calcd. for C110H65ClO5 1501.4657, found 1501.4662.
- Brown powder. 1H NMR, δ: 1.29 (m, 2H), 1.56 (m, 2H), 1.78 (m, 1H), 1.99 (m, 2H), 2.03 (m, 1H), 3.29 (m, 1H), 3.32 (m, 1H), 3.51 (m, 2H), 6.18 (m, 1H), 6.76 (m, 2H). 13C NMR, δ: 24.12, 29.96, 30.10, 31.48, 50.29, 53.65, 67.83, 68.06, 68.45, 73.59, 133.78, 133.90, 134.00, 142.26, 143.86, 146.96, 147.08, 147.23, 147.36, 147.55, 147.77, 147.89, 148.18, 148.31, 148.41, 148.53, 149.02, 149.16, 149.46, 149.56, 158.07, 158.35. MALDI–TOF, [M]– calcd. for C115H75ClO5 1571.5337, found 1571.5331.
- Brown powder. 1H NMR, δ: 1.30 (m, 2H), 1.33 (m, 2H), 1.39 (m, 2H), 1.47 (m, 2H), 1.81 (m, 1H), 1.98 (m, 2H), 2,06 (m, 1H), 3.28 (m, 2H), 3.48 (m, 2H), 6.12 (m, 1H), 6.74 (m, 2H). 13C NMR, δ: 26.48, 27.46, 28.67, 29.56, 30.03, 30.54, 31.77, 33.43, 50.31, 53.72, 67.77, 67.93, 68.12, 68.32, 73.60, 133.52, 142.25, 143.85, 144.40, 145.13, 145.30, 145.50, 145.63, 147.13, 147.30, 147.53, 147.71, 147.81, 148.08, 148.21, 148.41, 148.71, 148.88, 149.06, 149.21, 149.38, 149.51, 158.47. MALDI–TOF, [M]– calcd. for C125H95ClO5 1711.6943, found 1711.6939.
- Brown powder. 1H NMR, δ: 1.34 (m, 10H), 1.43 (m, 2H), 1.82 (m, 1H), 1.97 (m, 2H), 2.00 (m, 1H), 2.21 (m, 2H), 3.49 (m, 2H), 6.12 (m, 1H), 6.75 (m, 2H). 13C NMR, δ: 26.60, 26.69, 27.45, 29.64, 29.72, 29.78, 30.58, 31.74, 50.20, 53.66, 68.34, 68.71, 73.54, 133.30, 142.30, 143.83, 144.05, 144.26, 144.39, 144.69, 144.81, 145.14, 145.29, 145.47, 145.63, 145.93, 146.93, 147.14, 147.35, 147.56, 147.68, 147.96, 148.11, 148.33, 149.14, 149.32, 149.44, 158.71. MALDI–TOF, [M]– calcd. for C135H115ClO5 1851.8515, found 1851.8505.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piotrovsky, L.B.; Dumpis, M.A.; Litasova, E.V.; Safonova, A.F.; Selina, E.N.; Bulion, V.V.; Rodionova, O.M.; Sapronov, N.S. Toxicology of carbon nanostructures. Med. Acad. J. 2010, 10, 125–134. [Google Scholar]
- Rubio Arias, J.J.; Marques, M.D.F.V. Performance of poly(3-hexylthiophene) in bulk heterojunction solar cells: Influence of polymer size and size distribution. React. Funct. Polym. 2017, 113, 58–69. [Google Scholar] [CrossRef]
- Nakatsuji, S.i.; Ogawa, Y.; Takeuchi, S.; Akutsu, H.; Yamada, J.-i.; Naito, A.; Sudo, K.; Yasuoka, N. Novel photo-responsive organic spin systems: Preparation and properties of norbornadienes and spiropyrans with TEMPO radical substituents. J. Chem. Soc. Perkin Trans. 2 2000, 1969–1975. [Google Scholar] [CrossRef]
- Tuktarov, A.R.; Akhmetov, A.R.; Kirichenko, G.N.; Glazunova, V.I.; Khalilov, L.M.; Dzhemilev, U.M. Synthesis of functionally substituted methanofullerenes and study of their tribological properties. Russ. J. Appl. Chem. 2010, 83, 1238–1242. [Google Scholar] [CrossRef]
- Castro, E.; Garcia, A.H.; Zavala, G.; Echegoyen, L. Fullerenes in biology and medicine. J. Mater. Chem. B 2017, 5, 6523–6535. [Google Scholar] [CrossRef] [PubMed]
- Maggini, M.; Scorrano, G.; Prato, M. Addition of azomethine ylides to C60: Synthesis, characterization, and functionalization of fullerene pyrrolidines. J. Am. Chem. Soc. 1993, 115, 9798–9799. [Google Scholar] [CrossRef]
- Camps, X.; Hirsch, A. Efficient cyclopropanation of C60 starting from malonates. J. Chem. Soc. Perkin Trans. 1 1997, 1595–1596. [Google Scholar] [CrossRef]
- Lamparth, I.; Hirsch, A. Water-soluble malonic acid derivatives of C60 with a defined three-dimensional structure. J. Chem. Soc. Chem. Commun. 1994, 1727–1728. [Google Scholar] [CrossRef]
- Hirsch, A.; Vostrowsky, O. C60 Hexakisadducts with an Octahedral Addition Pattern—A New Structure Motif in Organic Chemistry. Eur. J. Org. Chem. 2001, 2001, 829–848. [Google Scholar] [CrossRef]
- Yan, W.; Seifermann, S.M.; Pierrat, P.; Bräse, S. Synthesis of highly functionalized C60 fullerene derivatives and their applications in material and life sciences. Org. Biomol. Chem. 2015, 13, 25–54. [Google Scholar] [CrossRef]
- Lorenz, P.; Hirsch, A. Photoswitchable Norbornadiene–Quadricyclane Interconversion Mediated by Covalently Linked C60. Chem. Eur. J. 2020, 26, 5220–5230. [Google Scholar] [CrossRef] [PubMed]
- Khakina, E.A.; Kraevaya, O.A.; Popova, M.L.; Peregudov, A.S.; Troyanov, S.I.; Chernyak, A.V.; Martynenko, V.M.; Kulikov, A.V.; Schols, D.; Troshin, P.A. Synthesis of different types of alkoxy fullerene derivatives from chlorofullerene C60Cl6. Org. Biomol. Chem. 2017, 15, 773–777. [Google Scholar] [CrossRef] [PubMed]
- Kornev, A.B.; Khakina, E.A.; Troyanov, S.I.; Kushch, A.A.; Peregudov, A.; Vasilchenko, A.; Deryabin, D.G.; Martynenko, V.M.; Troshin, P.A. Facile preparation of amine and amino acid adducts of [60]fullerene using chlorofullerene C60Cl6 as a precursor. Chem. Commun. 2012, 48, 5461–5463. [Google Scholar] [CrossRef] [PubMed]
- Khakina, E.A.; Yurkova, A.A.; Peregudov, A.S.; Troyanov, S.I.; Trush, V.V.; Vovk, A.I.; Mumyatov, A.V.; Martynenko, V.M.; Balzarini, J.; Troshin, P.A. Highly selective reactions of C60Cl6 with thiols for the synthesis of functionalized [60]fullerene derivatives. Chem. Commun. 2012, 48, 7158–7160. [Google Scholar] [CrossRef] [PubMed]
- Kraevaya, O.A.; Peregudov, A.S.; Godovikov, I.A.; Shchurik, E.V.; Martynenko, V.M.; Shestakov, A.F.; Balzarini, J.; Schols, D.; Troshin, P.A. Direct arylation of C60Cl6 and C70Cl8 with carboxylic acids: A synthetic avenue to water-soluble fullerene derivatives with promising antiviral activity. Chem. Commun. 2020, 56, 1179–1182. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-J.; Chetyrkina, M.; Wong, C.-W.; Kraevaya, O.A.; Zhilenkov, A.V.; Voronov, I.I.; Wang, P.-H.; Troshin, P.A.; Hsu, S.-h. Identification of potential descriptors of water-soluble fullerene derivatives responsible for antitumor effects on lung cancer cells via QSAR analysis. Comput. Struct. Biotechn. J. 2021, 19, 812–825. [Google Scholar] [CrossRef] [PubMed]
- Troshina, O.A.; Troshin, P.A.; Peregudov, A.S.; Kozlovskiy, V.I.; Balzarini, J.; Lyubovskaya, R.N. Chlorofullerene C60Cl6: A precursor for straightforward preparation of highly water-soluble polycarboxylic fullerene derivatives active against HIV. Org. Biomol. Chem. 2007, 5, 2783–2791. [Google Scholar] [CrossRef]
- Tuktarov, A.R.; Akhmetov, A.R.; Khuzin, A.A.; Dzhemilev, U.M. Synthesis and Properties of Energy-Rich Methanofullerenes Containing Norbornadiene and Quadricyclane Moieties. J. Org. Chem. 2018, 83, 4160–4166. [Google Scholar] [CrossRef]
- Dzhemilev, U.M.; Akhmetov, A.R.; Khuzin, A.A.; D’yakonov, V.A.; Dzhemileva, L.U.; Yunusbaeva, M.M.; Khalilov, L.M.; Tuktarov, A.R. A new original approach to the design of anticancer drugs based on energy-rich quadricyclanes. Russ. Chem. Bull. 2019, 68, 1036–1040. [Google Scholar] [CrossRef]
- Dzhemilev, U.M.; Khuzin, A.A.; Akhmetov, A.R.; D’yakonov, V.A.; Dzhemileva, L.U.; Yunusbaeva, M.M.; Tuktarov, A.R. Synthesis of C60 Fullerene–Quadricyclane Hybrid Compound and Its Preliminary In Vitro Antitumor Activity in Combination with Cisplatin. ACS Omega 2019, 4, 15929–15934. [Google Scholar] [CrossRef]
- Dzhemilev, U.M.; Akhmetov, A.R.; D’yakonov, V.A.; Dzhemileva, L.U.; Yunusbaeva, M.M.; Tuktarov, A.R. Synthesis and antitumor activity of methanofullerenes equipped with norbornadiene and quadricyclane moieties. Mendeleev Commun. 2020, 30, 150–152. [Google Scholar] [CrossRef]
- Akhmetov, A.R.; Tuktarov, A.R.; Sadretdinova, Z.R.; Khalilov, L.M.; Dzhemilev, U.M. New norbornadiene-tethered fulleropyrrolidines. Mendeleev Commun. 2020, 30, 352–354. [Google Scholar] [CrossRef]
- Yip, C.; Handerson, S.; Tranmer, G.K.; Tam, W. Intramolecular 1,3-Dipolar Cycloadditions of Norbornadiene-Tethered Nitrile Oxides. J. Org. Chem. 2001, 66, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Tranmer, G.K.; Tam, W. Intramolecular 1,3-Dipolar Cycloadditions of Norbornadiene-Tethered Nitrones. J. Org. Chem. 2001, 66, 5113–5123. [Google Scholar] [CrossRef] [PubMed]
- Avent, A.G.; Birkett, P.R.; Darwish, A.D.; Houlton, S.; Taylor, R.; Thomson, K.S.T.; Wei, X.-W. Formation and characterisation of alkoxy derivatives of [60]fullerene. J. Chem. Soc. Perkin Trans. 2 2001, 782–786. [Google Scholar] [CrossRef]
- Birkett, P.R.; Avent, A.G.; Darwish, A.D.; Kroto, H.W.; Taylor, R.; Walton, D.R.M. Preparation and 13C NMR spectroscopic characterisation of C60Cl6. J. Chem. Soc. Chem. Commun. 1993, 1230–1232. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhmetov, A.R.; Sadretdinova, Z.R.; Tulyabaev, A.R.; Khalilov, L.M. Hexa-Substituted Hybrid C60 Derivatives with Norbornadiene Fragments: Synthesis and Structure. Chem. Proc. 2023, 14, 67. https://doi.org/10.3390/ecsoc-27-16104
Akhmetov AR, Sadretdinova ZR, Tulyabaev AR, Khalilov LM. Hexa-Substituted Hybrid C60 Derivatives with Norbornadiene Fragments: Synthesis and Structure. Chemistry Proceedings. 2023; 14(1):67. https://doi.org/10.3390/ecsoc-27-16104
Chicago/Turabian StyleAkhmetov, Arslan R., Zarema R. Sadretdinova, Arthur R. Tulyabaev, and Leonard M. Khalilov. 2023. "Hexa-Substituted Hybrid C60 Derivatives with Norbornadiene Fragments: Synthesis and Structure" Chemistry Proceedings 14, no. 1: 67. https://doi.org/10.3390/ecsoc-27-16104
APA StyleAkhmetov, A. R., Sadretdinova, Z. R., Tulyabaev, A. R., & Khalilov, L. M. (2023). Hexa-Substituted Hybrid C60 Derivatives with Norbornadiene Fragments: Synthesis and Structure. Chemistry Proceedings, 14(1), 67. https://doi.org/10.3390/ecsoc-27-16104