Carbon Dots from Porphyridium cruentum Microalgae by High-Efficient Hydrothermal Approaches: Biocompatibility and Antioxidant Capabilities †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Synthesis of Carbon Dots (CDs)
2.2.2. In Vitro Cytotoxicity Assays and Cell Imaging
2.2.3. Evaluation of Antioxidant Capacity
3. Results and Discussion
3.1. Synthesis and Surface Characterization
3.2. Optical Characterization
3.3. Antioxidant Performance of µAlgae-CDs
3.4. Toxicity Evaluation and Cell Imaging
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozyurt, D.; Kobaisi, M.A.; Hocking, R.K.; Fox, B. Properties, synthesis, and applications of carbon dots: A review. Carbon Trends 2023, 12, 100276. [Google Scholar] [CrossRef]
- Bressi, V.; Balu, A.M.; Iannazzo, D.; Espro, C. Recent advances in the synthesis of carbon dots from renewable biomass by high-efficient hydrothermal and microwave green approaches. Curr. Opin. Green Sustain. Chem. 2023, 40, 100742. [Google Scholar] [CrossRef]
- Costa, A.I.; Barata, P.D.; Moraes, B.; Prata, J.V. Carbon Dots from Coffee Grounds: Synthesis, Characterization, and Detection of Noxious Nitroanilines. Chemosensors 2022, 10, 113. [Google Scholar] [CrossRef]
- Sousa, D.A.; Costa, A.I.; Alexandre, M.R.; Prata, J.V. How an Environmental Issue could Turn into Useful High-valued Products: The Olive Mill Wastewater Case. Sci. Total Environ. 2019, 647, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Ðorđević, L.; Arcudi, F.; Cacioppo, M.; Prato, M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol. 2022, 17, 112–130. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.M.; Ravindran, R.; Narayanan, M.; Samuel, S.M.; Pugazhendhi, A.; Kumar, G. Microalgae: A prospective low cost green alternative for nanoparticle synthesis. Curr. Opin. Environ. Sci. Health 2021, 20, 100163. [Google Scholar] [CrossRef]
- Dong, D.; Liu, T.; Liang, D.; Jin, X.; Qi, Z.; Li, A.; Ning, Y. Facile Hydrothermal Synthesis of Chlorella-Derived Environmentally Friendly Fluorescent Carbon Dots for Differentiation of Living and Dead Chlorella. ACS Appl. Bio Mater. 2021, 4, 3697–3705. [Google Scholar] [CrossRef]
- Ramanan, V.; Thiyagarajan, S.K.; Raji, K.; Suresh, R.; Sekar, R.; Ramamurth, P. Outright Green Synthesis of Fluorescent Carbon Dots from Eutrophic Algal Blooms for In Vitro Imaging. ACS Sustainable Chem. Eng. 2016, 4, 4724–4731. [Google Scholar] [CrossRef]
- Eaton, D.F. Reference materials for fluorescence measurement. Pure Appl. Chem. 1988, 60, 1107–1114. [Google Scholar] [CrossRef]
- A Guide to Recording Fluorescence Quantum Yields, Horiba Scientific. Available online: https://static.horiba.com/fileadmin/Horiba/Application/Materials/Material_Research/Quantum_Dots/quantumyieldstrad.pdf (accessed on 10 October 2023).
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
Entry | Antioxidant Activity/% | ΦF (λ = 340 nm) |
---|---|---|
1 | 94.2 ± 0.47 1 | 0.065 |
2 | 38.3 ± 0.08 1 | 0.159 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chouzende, I.; Costa, A.I.; Barata, P.D.; Martins, S.; Semedo, M.C.; Cardoso, F.M.H.; Lobo, M.L.; Prata, J.V. Carbon Dots from Porphyridium cruentum Microalgae by High-Efficient Hydrothermal Approaches: Biocompatibility and Antioxidant Capabilities. Chem. Proc. 2023, 14, 4. https://doi.org/10.3390/ecsoc-27-16074
Chouzende I, Costa AI, Barata PD, Martins S, Semedo MC, Cardoso FMH, Lobo ML, Prata JV. Carbon Dots from Porphyridium cruentum Microalgae by High-Efficient Hydrothermal Approaches: Biocompatibility and Antioxidant Capabilities. Chemistry Proceedings. 2023; 14(1):4. https://doi.org/10.3390/ecsoc-27-16074
Chicago/Turabian StyleChouzende, Inês, Alexandra I. Costa, Patrícia D. Barata, Sónia Martins, Magda C. Semedo, Fernando M. H. Cardoso, Maria Luísa Lobo, and José V. Prata. 2023. "Carbon Dots from Porphyridium cruentum Microalgae by High-Efficient Hydrothermal Approaches: Biocompatibility and Antioxidant Capabilities" Chemistry Proceedings 14, no. 1: 4. https://doi.org/10.3390/ecsoc-27-16074
APA StyleChouzende, I., Costa, A. I., Barata, P. D., Martins, S., Semedo, M. C., Cardoso, F. M. H., Lobo, M. L., & Prata, J. V. (2023). Carbon Dots from Porphyridium cruentum Microalgae by High-Efficient Hydrothermal Approaches: Biocompatibility and Antioxidant Capabilities. Chemistry Proceedings, 14(1), 4. https://doi.org/10.3390/ecsoc-27-16074