Synthesis and Characterization of Hybrid Structures Based on Furan-2(3H)-ones and Chromen-4(4H)-ones—Potential Antibacterial Activity †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical Measurements
2.2. Synthesis and Characterization of Compounds 3a–d
2.2.1. Under Conventional Heating Conditions (Method A)
2.2.2. Under Microwave Irradiation (Method B)
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manolov, S.; Ivanov, I.; Bojilov, D.; Nedialkov, P. Synthesis, In Silico, and In Vitro Biological Evaluation of New Furan Hybrid Molecules. Processes 2022, 10, 1997. [Google Scholar] [CrossRef]
- Husain, A.; Khan, S.A.; Iram, F.; Iqbal, M.A.; Asif, M. Insights into the chemistry and therapeutic potential of furanones: A versatile pharmacophore. Eur. J. Med. Chem. 2019, 171, 66–92. [Google Scholar] [CrossRef]
- Kiruthiga, N.; Alagumuthu, M.; Selvinthanuja, C.; Srinivasan, K.; Sivakumar, T. Molecular Modelling, Synthesis and Evaluation of Flavone and Flavanone Scaffolds as Anti-inflammatory Agents. Antiinflamm. Antiallergy Agents Med. Chem. 2021, 20, 20–38. [Google Scholar] [CrossRef]
- Mohsin, N.U.A.; Irfan, M.; Hassan, S.U.; Saleem, U. Current Strategies in Development of New Chromone Derivatives with Diversified Pharmacological Activities: A Review. Pharm. Chem. J. 2020, 54, 241–257. [Google Scholar] [CrossRef] [PubMed]
- Sanduja, M.; Gupta, J.; Singh, H.; Pagare, P.P.; Rana, A. Uracil-coumarin based hybrid molecules as potent anti-cancer and anti-bacterial agents. J. Saudi Chem. Soc. 2020, 24, 251–266. [Google Scholar] [CrossRef]
- Deuther-Conrad, W.; Diez-Iriepa, D.; Iriepa, I.; López-Muñoz, F.; Martínez-Grau, M.A.; Gütschow, M.; Marco-Contelles, J. Studies on the Affinity of 6-[(n-(Cyclo)aminoalkyl)oxy]-4H-chromen-4-ones for Sigma 1/2 Receptors. RSC Med. Chem. 2021, 12, 1000–1004. [Google Scholar] [CrossRef]
- Wang, L.; Song, J.; Liu, A.; Xiao, B.; Li, S.; Wen, Z.; Lu, Y.; Du, G. Research Progress of the Antiviral Bioactivities of Natural Flavonoids. Nat. Prod. Bioprospect. 2020, 10, 271–283. [Google Scholar] [CrossRef] [PubMed]
- Brodowska, K.M. Natural flavonoids: Classification, potential role, and application of flavonoid analogues. Eur. J. Biol. Res. 2017, 7, 108–123. [Google Scholar] [CrossRef]
- Song, M.; Liu, Y.; Li, T.; Liu, X.; Hao, Z.; Ding, S.; Panichayupakaranant, P.; Zhu, K.; Shen, J. Plant Natural Flavonoids against Multidrug Resistant Pathogens. Adv. Sci. 2021, 8, 2100749. [Google Scholar] [CrossRef]
- Santana, F.P.R.; Thevenard, F.; Gomes, K.S.; Taguchi, L.; Câmara, N.O.S.; Stilhano, R.S.; Ureshino, R.P.; Prado, C.M.; Lago, J.H.G. New perspectives on natural flavonoids on COVID-19-induced lung injuries. Phytother. Res. 2021, 35, 4988–5006. [Google Scholar] [CrossRef]
- Cheng, M.-J.; Wu, M.-D.; Kuo, Y.-C.; Chen, J.-J.; Kuo, Y.-H. Monafuranone, A New Furan-2-One Derivative from Monascus sp. Fermented Rice. Chem. Nat. Compd. 2022, 58, 822–824. [Google Scholar] [CrossRef]
- Burch, P.; Binaghi, M.; Scherer, M.; Wentzel, C.; Bossert, D.; Eberhardt, L.; Neuburger, M.; Scheiffele, P.; Gademann, K. Total Synthesis of Gelsemiol. J. Chem. Eur. 2013, 19, 2589–2591. [Google Scholar] [CrossRef] [PubMed]
- Liua, S.; Liub, X.; Guoa, L.; Che, Y.; Liu, L. 2H-Pyran-2-one and 2H-Furan-2-one Derivatives from the Plant Endophytic Fungus Pestalotiopsis fici. Chem. Biodivers. 2013, 10, 2007–2013. [Google Scholar] [CrossRef] [PubMed]
- Lipina, D.V.; Denisova, E.I.; Devyatkin, I.O.; Okoneshnikova, E.A.; Shipilovskikh, D.A.; Makhmudov, R.R.; Igidov, N.M.; Shipilovskikh, S.A. Synthesis and Antinociceptive Activity of Substituted 5-(Het)Aryl-3-(4-methylbenzoyl)hydrazono-3H-furan-2-ones. Russ. J. Gen. Chem. 2021, 91, 2469–2474. [Google Scholar] [CrossRef]
- Igidov, S.N.; Lipin, D.V.; Turyshev, A.Y.; Chashchina, S.V.; Shipilovskikh, D.A.; Zvereva, O.V.; Mitusova, K.A.; Silaichev, P.S.; Igidov, N.M. Synthesis, intramolecular cyclization and anti-inflammatory activity of substituted 2-(2-(Furan-2-carbonyl)hydrazono)-4-oxobutanoic acids. Chim. Techno Acta. 2023, 10, 1–8. [Google Scholar] [CrossRef]
- Flefel, E.M.; Tantawy, W.A.; Abdel-Mageid, R.E.; Amr, A.E.-G.E.; Nadeem, R. Synthesis and antiviral activities of some 3-(naphthalen-1-ylmethylene)-5-phenylfuran-2(3H)-one candidates. Res. Chem. Intermed. 2014, 40, 1365–1381. [Google Scholar] [CrossRef]
- Rappai, J.P.; Raman, V.; Unnikrishnan, P.A.; Prathapan, S.; Thomas, S.K.; Paulose, C.S. Preliminary investigations on the synthesis and antitumor activity of 3(2H)-furanones. Bioorg. Med. Chem. Lett. 2009, 19, 764–765. [Google Scholar] [CrossRef]
- Alam, M.M.; Sarkar, D.P.; Husain, A.; Marella, A.; Shaquiquzzaman, M.; Akhter, M.; Shaharyar, M.; Alam, O.; Azam, F. Synthesis of quinoline-attached furan-2(3H)-ones having anti-inflammatory and antibacterial properties with reduced gastro-intestinal toxicity and lipid peroxidation. J. Serb. Chem. Soc. 2011, 76, 1617–1626. [Google Scholar] [CrossRef]
- Bhando, T.; Bhattacharyya, T.; Gaurav, A.; Akhter, J.; Saini, M.; Gupta, V.K.; Srivastava, S.K.; Sen, H.; Navani, N.K.; Gupta, V.; et al. Antibacterial properties and in vivo efficacy of a novel nitrofuran, IITR06144, against MDR pathogens. J. Antimicrob. Chemother. 2020, 75, 418–428. [Google Scholar] [CrossRef]
- Mohamed, M.S.; Elamin, K.M.; Alenazy, R.; Eltayib, E.M.; Idriss, M.T.; Alhudaib, N.A.A.; Elsaman, T.; Mohamed, M.A. Synthesis, Antimicrobial, and Anticancer Activities of Novel Nitrofuran Derivatives. J. Chem. 2023, 2023, 1481595. [Google Scholar] [CrossRef]
- Emami, S.; Shahrokhirad, N.; Foroumadi, A.; Faramarzi, M.A.; Samadi, N.; Soltani-Ghofrani, N. 7-Piperazinylquinolones with methylene-bridged nitrofuran scaffold as new antibacterial agents. Med. Chem. Res. 2013, 22, 5940–5947. [Google Scholar] [CrossRef]
- Kamal, A.; Hussaini, S.M.A.; Faazil, S.; Poornachandra, Y.; Reddy, G.N.; Kumar, C.G.; Rajput, V.S.; Rani, C.; Sharma, R.; Khan, I.A.; et al. Anti-tubercular agents. Part 8: Synthesis, antibacterial and antitubercular activity of 5-nitrofuran based 1,2,3-triazoles. J. Bioorg. Med. Chem. Lett. 2013, 23, 6842–6846. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Su, S.; Chen, M.; Peng, F.; Zhou, Q.; Liu, T.; Liu, L.; Xue, W. Antibacterial Activities of Novel Dithiocarbamate-Containing 4H-Chromen-4-one Derivatives. J. Agric. Food Chem. 2020, 68, 5641–5647. [Google Scholar] [CrossRef] [PubMed]
- Kurt-Kızıldoğan, A.; Akarsu, N.; Otur, Ç.; Kivrak, A.; Aslan-Ertas, N.; Arslan, S.; Mutlu, D.; Konus, M.; Yılmaz, C.; Cetin, D.; et al. A Novel 4H-Chromen-4-One Derivative from Marine Streptomyces ovatisporus S4702T as Potential Antibacterial and Anti-Cancer Agent. Anticancer Agents Med. Chem. 2022, 22, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Liu, T.; Wang, Q.; Liu, F.; Cao, X.; Yang, J.; Liu, L.; Xie, C.; Xue, W. Antibacterial and Antiviral Activities of 1,3,4-Oxadiazole Thioether 4H-Chromen-4-one Derivatives. J. Agric. Food Chem. 2021, 69, 11085–11094. [Google Scholar] [CrossRef]
- Sedavkina, V.A.; Morozova, N.A.; Egorova, A.Y.; Ostroumov, I.G. Synthesis of 5-alkyl-3H-thiolen-2-ones and 5-alkyl-3H-furan-2-ones and condensation reactions at the heterocyclic methylene group. Chem. Heterocycl. Compd. 1987, 23, 377–380. [Google Scholar] [CrossRef]
Compound | Thermal Activation | Microwave Activation | ||||
---|---|---|---|---|---|---|
T, °C | P, Bar | Yield, % | T, °C | P, Bar | Yield, % | |
3a | 118 | 1 | 70 | 135 | 4 | 80 |
3b | 118 | 1 | 52 | 135 | 4 | 66 |
3c | 118 | 1 | 55 | 135 | 4 | 63 |
3d | 118 | 1 | 82 | 135 | 4 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arzyamova, E.M.; Tarasov, D.O.; Yegorova, A.Y. Synthesis and Characterization of Hybrid Structures Based on Furan-2(3H)-ones and Chromen-4(4H)-ones—Potential Antibacterial Activity. Chem. Proc. 2023, 14, 2. https://doi.org/10.3390/ecsoc-27-16062
Arzyamova EM, Tarasov DO, Yegorova AY. Synthesis and Characterization of Hybrid Structures Based on Furan-2(3H)-ones and Chromen-4(4H)-ones—Potential Antibacterial Activity. Chemistry Proceedings. 2023; 14(1):2. https://doi.org/10.3390/ecsoc-27-16062
Chicago/Turabian StyleArzyamova, Ekaterina M., Danila O. Tarasov, and Alevtina Yu. Yegorova. 2023. "Synthesis and Characterization of Hybrid Structures Based on Furan-2(3H)-ones and Chromen-4(4H)-ones—Potential Antibacterial Activity" Chemistry Proceedings 14, no. 1: 2. https://doi.org/10.3390/ecsoc-27-16062
APA StyleArzyamova, E. M., Tarasov, D. O., & Yegorova, A. Y. (2023). Synthesis and Characterization of Hybrid Structures Based on Furan-2(3H)-ones and Chromen-4(4H)-ones—Potential Antibacterial Activity. Chemistry Proceedings, 14(1), 2. https://doi.org/10.3390/ecsoc-27-16062