Design, Synthesis and Structural Study of a Bisthiosemicarbazone Ligand Precursor of Metallosupramolecular Architectures †
Abstract
:1. Introduction
2. Experimental Section
2.1. Reactants and Solvents
2.2. Synthesis and Characterization of the Bisthiosemicarbazone Ligand H2L
2.3. Crystallographic Data of H2L
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bingul, M.; Şenkuytu, E.; Saglam, M.F.; Boga, M.; Kandemir, H.; Sengul, I.F. Synthesis, photophysical and antioxidant properties of carbazole-based bis-thiosemicarbazones. Res. Chem. Intermed. 2019, 45, 4487–4499. [Google Scholar] [CrossRef]
- Chikaraishi, N.K.; Onodera, K.; Nakano, S.; Hayashi, K.; Nomiya, K. Syntheses, crystal structures and antimicrobial activities of 6-coordinate antimony(III) complexes with tridentate 2-acetylpyridine thiosemicarbazone, bis(thiosemicarbazone) and semicarbazone ligands. J. Inorg. Chem. 2006, 100, 1176–1186. [Google Scholar]
- Alomar, K.; Landreau, A.; Allain, M.; Bouet, G.; Larcher, G. Synthesis, structure and antifungal activity of thiophene-2,3-dicarboxaldehyde bis(thiosemicarbazone) and nickel(II), copper(II) and cadmium(II) complexes: Unsymmetrical coordination mode of nickel complex. J. Inorg. Biochem. 2013, 126, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Castiñeiras, A.; Fernandez-Hermida, N.; Garcia-Santos, I. Neutral NiII, PdII and PtII ONS-pincer complexes of 5-acetylbarbituric-4Ndimethylthiosemicarbazone: Synthesis, characterization and properties. Dalton Trans. 2012, 41, 13486. [Google Scholar] [CrossRef] [PubMed]
- Anjum, R.; Palanimuthu, D.; Kalinowski, D.S.; Lewis, W.; Park, K.C.; Kovacevic, Z.; Khan, I.U.; Richardson, D.R. Synthesis, Characterization, and In Vitro Anticancer Activity of Copper and Zinc Bis(Thiosemicarbazone) Complexes. Inorg. Chem. 2019, 58, 13709–13723. [Google Scholar] [CrossRef] [PubMed]
- Parrilha, G.L.; dos Santos, R.G.; Beraldo, H. Applications of radiocomplexes with thiosemicarbazones and bis(thiosemicarbazones) in diagnostic and therapeutic nuclear medicine. Coord. Chem. Rev. 2022, 458, 214418. [Google Scholar] [CrossRef]
- Quiroga, A.G.; Ranninger, C.N. Contribution to the SAR field of metallated and coordination complexes: Studies of the palladium and platinum derivatives with selected thiosemicarbazones as antitumoral drugs. Coord. Chem. Rev. 2004, 248, 119–133. [Google Scholar] [CrossRef]
- Martinez-Calvo, M.; Romero, M.J.; Pedrido, R.; Gonzalez-Noya, A.M.; Zaragoza, G.; Bermejo, M.R. Metal self-recognition: A pathway to control the formation of dihelicates and mesocates. Dalton Trans. 2012, 41, 13395. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fariña, S.; Velo-Heleno, I.; Carballido, R.; Martínez-Calvo, M.; Barcia, R.; Palacios, Ò.; Capdevila, M.; González-Noya, A.M.; Pedrido, R. Exploring the Biological Properties of Zn(II) Bisthiosemicarbazone Helicates. Int. J. Mol. Sci. 2023, 24, 2246. [Google Scholar] [CrossRef] [PubMed]
- Romero, M.J.; Martinez-Calvo, M.; Maneiro, M.; Zaragoza, G.; Pedrido, R.; Gonzalez-Noya, A.M. Selective Metal-Assisted Assembly of Mesocates or Helicates with Tristhiosemicarbazone Ligands. Inorg. Chem. 2019, 58, 881–889. [Google Scholar] [CrossRef] [PubMed]
Main Bond Distances (Å) | |||
O1-C17 | 1.220 (3) | N3-C9 | 1.323 (4) |
N1-C8 | 1.289 (3) | N3-C10 | 1.457 (4) |
N1-N2 | 1.383 (3) | N4-C13 | 1.277 (4) |
N2-C9 | 1.362 (3) | N4-N5 | 1.371 (3) |
N5-C14 | 1.370 (4) | N6-14 | 1.378 (13) |
N6-C15 | 1.496 (16) | S1-C9 | 1.629 (3) |
S2-C14 | 1.678 (3) | ||
Angles (°) | |||
C8-N1-N2 | 117.1 (2) | C13-N4-N5 | 119.9 (3) |
C9-N2-N1 | 119.2 (2) | N5-C14-N6 | 113.6 (6) |
N3-C9-N2 | 117.2 (2) | N6-C14-N5 | 117.8 (7) |
N2-C9-S1 | 118.8 (2) | N5-C14-S2 | 118.9 (3) |
N3-C9-S1 | 124.2 (2) | N6-C14-S2 | 126.4 (6) |
C14-N4-N5 | 118.6 (3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barreiro-Sisto, U.; Velo-Heleno, I.; Martínez-Calvo, M.; Maneiro, M.; Fernández-Fariña, S. Design, Synthesis and Structural Study of a Bisthiosemicarbazone Ligand Precursor of Metallosupramolecular Architectures. Chem. Proc. 2023, 14, 3. https://doi.org/10.3390/ecsoc-27-16087
Barreiro-Sisto U, Velo-Heleno I, Martínez-Calvo M, Maneiro M, Fernández-Fariña S. Design, Synthesis and Structural Study of a Bisthiosemicarbazone Ligand Precursor of Metallosupramolecular Architectures. Chemistry Proceedings. 2023; 14(1):3. https://doi.org/10.3390/ecsoc-27-16087
Chicago/Turabian StyleBarreiro-Sisto, Uxía, Isabel Velo-Heleno, Miguel Martínez-Calvo, Marcelino Maneiro, and Sandra Fernández-Fariña. 2023. "Design, Synthesis and Structural Study of a Bisthiosemicarbazone Ligand Precursor of Metallosupramolecular Architectures" Chemistry Proceedings 14, no. 1: 3. https://doi.org/10.3390/ecsoc-27-16087
APA StyleBarreiro-Sisto, U., Velo-Heleno, I., Martínez-Calvo, M., Maneiro, M., & Fernández-Fariña, S. (2023). Design, Synthesis and Structural Study of a Bisthiosemicarbazone Ligand Precursor of Metallosupramolecular Architectures. Chemistry Proceedings, 14(1), 3. https://doi.org/10.3390/ecsoc-27-16087