Microwave-Irradiation-Assisted Synthesis of Bismuth Ferrite Nanoparticles: Investigating Fuel-to-Oxidant Ratios †
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Characterization and Equipment
2.3. Synthesis Method
2.4. Photocatalysis Performance
3. Results and Discussion
3.1. Characterization of BiFeO3
3.2. Photocatalytic Behavior of BiFeO3 Nanoparticles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, A.; Kuang, Y.; Liang, Z.; Sun, X. Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: A review. Mater. Today Nano 2020, 11, 100076. [Google Scholar] [CrossRef]
- Polshettiwar, V.; Nadagouda, M.N.; Varma, R.S. Microwave-assisted chemistry: A rapid and sustainable route to synthesis of organics and nanomaterials. Aust. J. Chem. 2009, 62, 16–26. [Google Scholar] [CrossRef]
- Becerra-Paniagua, D.K.; Díaz-Cruz, E.B.; Baray-Calderón, A.; Garcia-Angelmo, A.R.; Regalado-Pérez, E.; Rodriguez-Torres, M.d.P.; Martínez-Alonso, C. Nanostructured metal sulphides synthesized by microwave-assisted heating: A review. J. Mater. Sci. Mater. Electron. 2022, 33, 22631–22667. [Google Scholar] [CrossRef]
- Jadhav, A.; Devale, R.P. Review on Microwave, The General purpose in Microwave Assisted Synthesis for Green Chemistry. Asian J. Res. Chem. 2022, 15, 182–185. [Google Scholar] [CrossRef]
- Kaur, N.; Singh, A.; Ahmad, W. Microwave assisted green synthesis of silver nanoparticles and its application: A review. J. Inorg. Organomet. Polym. Mater. 2022, 33, 663–672. [Google Scholar] [CrossRef]
- Krishnan, R.; Shibu, S.N.; Poelman, D.; Badyal, A.K.; Kunti, A.K.; Swart, H.C.; Menon, S.G. Recent advances in microwave synthesis for photoluminescence and photocatalysis. Mater. Today Commun. 2022, 32, 103890. [Google Scholar] [CrossRef]
- Diaz de Grenu, B.; de Los Reyes, R.; Costero, A.M.; Amorós, P.; Ros-Lis, J.V. Recent progress of microwave-assisted synthesis of silica materials. Nanomaterials 2020, 10, 1092. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.R.; Mohite, S.K. A brief review: Microwave chemistry and its applications. Res. J. Pharm. Dos. Forms Technol. 2020, 12, 191–197. [Google Scholar] [CrossRef]
- Yousaf, M.; Lu, Y.; Hu, E.; Wang, B.; Akhtar, M.N.; Noor, A.; Akbar, M.; Shah, M.Y.; Wang, F.; Zhu, B. Tunable magneto-optical and interfacial defects of Nd and Cr-doped bismuth ferrite nanoparticles for microwave absorber applications. J. Colloid Interface Sci. 2021, 608, 1868–1881. [Google Scholar] [CrossRef] [PubMed]
- Neha, N.; Verma, R.; Chauhan, A.; Kumari, N.; Kumar, P.; Kumar, R. Effect of synthesis techniques on the magnetic properties of Bismuth ferrite: A review. In Proceedings of the AIP Conference Proceedings, Breclavi, Czech Republic, 26–30 May 2022; AIP Publishing LLC: Melville, NY, USA, 2022; Volume 2357. [Google Scholar]
- Aepuru, R.; Kumar, V.; Verma, P.; Sahoo, P.K.; Panda, H. Polarization Induced Multiferroic Bismuth Ferrite Nanostructures: Investigation of Dielectric and Magnetic Properties. In Proceedings of the 2021 International Scientific Conference Electronics (ET), Sozopol, Bulgaria, 15–17 September 2021; pp. 1–8. [Google Scholar]
- Zhang, J.; Cui, Y.; Liu, N.; Qi, Q.; Huang, R.; Chen, K.; Liu, L.; Han, Z.; Yuan, G. Quasipolaron Surface Polarization in Bismuth Ferrite. Phys. Rev. Appl. 2022, 18, L051002. [Google Scholar] [CrossRef]
- Shi, Y.; Yan, F.; He, X.; Huang, K.; Shen, B.; Zhai, J. B-site-doped BiFeO3-based piezoceramics with enhanced ferro/piezoelectric properties and good temperature stability. J. Am. Ceram. Soc. 2020, 103, 6245–6254. [Google Scholar] [CrossRef]
- Lacerda, L.H.S.; de Lazaro, S.R. Density Functional Theory investigation of rhombohedral multiferroic oxides for photocatalytic water splitting and organic photodegradation. J. Photochem. Photobiol. A Chem. 2020, 400, 112656. [Google Scholar] [CrossRef]
- Ćurković, L.; Veseli, R.; Gabelica, I.; Žmak, I.; Ropuš, I.; Vukšić, M. A review of microwave-assisted sintering technique. Trans. FAMENA 2021, 45, 1–16. [Google Scholar] [CrossRef]
- Gao, T.; Chen, Z.; Huang, Q.; Niu, F.; Huang, X.; Qin, L.; Huang, Y. A review: Preparation of bismuth ferrite nanoparticles and its applications in visible-light induced photocatalyses. Rev. Adv. Mater. Sci. 2015, 40, 97–109. [Google Scholar]
- Bak, J.-W.; Ham, Y.-S.; Shin, S.-Y.; Park, K.-J.; You, C.-Y.; Jeong, D.-Y.; Cho, N.-H. Fine Control of Multiferroic Features of Nanoscale BiFeO3 Powders Synthesized by Microwave-Assisted Solid-State Reaction. Electron. Mater. Lett. 2023, 19, 495–501. [Google Scholar] [CrossRef]
- Sulistiani, F.A.; Suharyadi, E.; Kato, T.; Iwata, S. Effects of NaOH concentration and temperature on microstructures and magnetic properties of bismuth ferrite (BiFeO3) nanoparticles synthesized by coprecipitation method. Key Eng. Mater. 2020, 855, 9–15. [Google Scholar] [CrossRef]
- Mukherjee, S. Bandgap and PL Spectra of Bismuth Ferrite-Nickel Ferrite Nanocomposites Synthesized by Wet Chemistry. Interceram Int. Ceram. Rev. 2020, 69, 50–53. [Google Scholar] [CrossRef]
- Nazeer, Z.; Bibi, I.; Majid, F.; Kamal, S.; Ghafoor, A.; Ali, A.; Kausar, A.; Elqahtani, Z.M.; Alwadai, N.; Iqbal, M. Microemulsion synthesis of Ga and Sr doped BiFeO3 nanoparticles and evaluation of their ferroelectric, optical, dielectric and photocatalytic properties. Phys. B Condens. Matter 2023, 657, 414788. [Google Scholar] [CrossRef]
- Sanga, P.; Wang, J.; Li, X.; Chen, J.; Qiu, H. Effective Removal of Sulfonamides Using Recyclable MXene-Decorated Bismuth Ferrite Nanocomposites Prepared via Hydrothermal Method. Molecules 2023, 28, 1541. [Google Scholar] [CrossRef]
- Mubarak, T.H.; Hassan, K.H.; Khodair, Z.T.; Kareem, C.H.; Kamil, A.A. Characterization of nanostructured bismuth ferrite (BiFeO3) prepared by sol-gel method. In Proceedings of the 2nd International Conference on Mathematical Techniques and Applications: Icmta2021, Kattankulathur, India, 24–26 March 2021; p. 090022. [Google Scholar]
- Mhamad, S.A.; Ali, A.A.; Mohtar, S.S.; Aziz, F.; Aziz, M.; Jaafar, J.; Yusof, N.; Salleh, W.N.W.; Ismail, A.F.; Chandren, S. Synthesis of bismuth ferrite by sol-gel auto combustion method: Impact of citric acid concentration on its physicochemical properties. Mater. Chem. Phys. 2022, 282, 125983. [Google Scholar] [CrossRef]
- Palomino-Resendiz, R.L.; Bolarín-Miró, A.M.; Pedro-García, F.; Sánchez-De Jesús, F.; Espinós-Manzorro, J.P.; Cortés-Escobedo, C.A. Analysis of the effect of cationic ratio Bi3+/Fe3+ on the magnetic and multiferroic properties of BiFeO3 nanoparticles synthesized using a sonochemical-assisted method. Ceram. Int. 2022, 48, 14746–14753. [Google Scholar] [CrossRef]
- Parvez, M.M.; Haque, M.E.; Akter, M.; Ferdous, H. Synthesis of Bismuth Ferrite Nanoparticles by Modified Pechini Sol-Gel Method. Int. J. Sci. Eng. Investig. 2020, 9, 35–38. [Google Scholar]
- Banoth, P.; Sohan, A.; Kandula, C.; Kanaka, R.K.; Kollu, P. Microwave-assisted solvothermal route for one-step synthesis of pure phase bismuth ferrite microflowers with improved magnetic and dielectric properties. ACS Omega 2022, 7, 12910–12921. [Google Scholar] [CrossRef]
- Devika, S.; Tayade, R.J. Low temperature energy-efficient synthesis methods for bismuth-based nanostructured photocatalysts for environmental remediation application: A review. Chemosphere 2022, 304, 135300. [Google Scholar] [CrossRef]
- Shahrab, F.; Tadjarodi, A. Exploring the role of fuel in the synthesis of bismuth ferrite nanoparticles by microwave-assisted combustion in solid state and the study of photocatalytic degradation of Brilliant Blue. J. Mol. Struct. 2024, 1295, 136806. [Google Scholar] [CrossRef]
- Nazir, A.; Latif, S.; Adil, S.F.; Kuniyil, M.; Imran, M.; Hatshan, M.R.; Kanwal, F.; Shaik, B. Photocatalytic Degradation of Cefixime Trihydrate by Bismuth Ferrite Nanoparticles. Materials 2021, 15, 213. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Rai, A.K.; Singh, V.B.; Rai, S.B. Vibrational spectrum of glycine molecule. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 2741–2746. [Google Scholar] [CrossRef] [PubMed]
- Kubota, H.; Liu, C.; Toyao, T.; Maeno, Z.; Ogura, M.; Nakazawa, N.; Inagaki, S.; Kubota, Y.; Shimizu, K.I. Formation and reactions of NH4NO3 during transient and steady-state NH3-SCR of NO x over H-AFX zeolites: Spectroscopic and theoretical studies. ACS Catal. 2020, 10, 2334–2344. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, J.; Liu, X.; Lv, S.; Gao, R.; Cai, W.; Wang, F.; Fu, C. Micro-area ferroelectric, piezoelectric and conductive properties of single BiFeO3 nanowire by scanning probe microscopy. Nanomaterials 2019, 9, 190. [Google Scholar] [CrossRef] [PubMed]
- Nkwachukwu, O.V.; Muzenda, C.; Ojo, B.O.; Zwane, B.N.; Koiki, B.A.; Orimolade, B.O.; Nkosi, D.; Mabuba, N.; Arotiba, O.A. Photoelectrochemical degradation of organic pollutants on a La3+ doped BiFeO3 perovskite. Catalysts 2021, 11, 1069. [Google Scholar] [CrossRef]
Catalyst | Degradation (%) 30 min | Degradation (%) 60 min | Degradation (%) 120 min | Degradation (%) 180 min |
---|---|---|---|---|
BiFeO3 | 60.47 | 72.70 | 84.62 | 96.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahrab, F.; Tadjarodi, A. Microwave-Irradiation-Assisted Synthesis of Bismuth Ferrite Nanoparticles: Investigating Fuel-to-Oxidant Ratios. Chem. Proc. 2023, 14, 104. https://doi.org/10.3390/ecsoc-27-16037
Shahrab F, Tadjarodi A. Microwave-Irradiation-Assisted Synthesis of Bismuth Ferrite Nanoparticles: Investigating Fuel-to-Oxidant Ratios. Chemistry Proceedings. 2023; 14(1):104. https://doi.org/10.3390/ecsoc-27-16037
Chicago/Turabian StyleShahrab, Fatemeh, and Azadeh Tadjarodi. 2023. "Microwave-Irradiation-Assisted Synthesis of Bismuth Ferrite Nanoparticles: Investigating Fuel-to-Oxidant Ratios" Chemistry Proceedings 14, no. 1: 104. https://doi.org/10.3390/ecsoc-27-16037
APA StyleShahrab, F., & Tadjarodi, A. (2023). Microwave-Irradiation-Assisted Synthesis of Bismuth Ferrite Nanoparticles: Investigating Fuel-to-Oxidant Ratios. Chemistry Proceedings, 14(1), 104. https://doi.org/10.3390/ecsoc-27-16037