Plant-Derived Triterpenoid Functionalization: Synthesis of α-Acyloxycarboxamides †
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. General Information, Chemicals, and Instrumentation
3.2. General Procedure
3.3. Spectral Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Springob, K.; Kutchan, T.M. Introduction to the different classes of natural products. In Plant-Derived Natural Products; Osbourn, A., Lanzotti, V., Eds.; Springer: New York, NY, USA, 2009; pp. 3–50. [Google Scholar]
- Talapatra, S.K.; Talapatra, B. Introduction: Enzymes. Cofactors/Coenzymes. Primary and Secondary Metabolites. Natural Products and their Functions. Plant Chemical Ecology. Biosynthesis. Metabolic Pathways. In Chemistry of Plant Natural Products; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–22. [Google Scholar]
- Brahmkshatriya, P.P.; Brahmkshatriya, P.S. Terpenes: Chemistry, Biological Role, and Therapeutic Applications. In Natural Products; Ramawat, K., Mérillon, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 2665–2691. [Google Scholar]
- Rascón-Valenzuela, L.A.; Torres-Moreno, H.; Velázquez-Contreras, C.; Garibay-Escobar, A.; Robles-Zepeda, R.E. Triterpenoids: Synthesis, Uses in Cancer Treatment and Other Biological Activities. In Advances in Medicine and Biology; Berhardt, L.V., Ed.; Nova Science Publishers: New York, NY, USA, 2017; Volume 106, pp. 139–182. [Google Scholar]
- Chudzik, M.; Korzonek-Szlacheta, I.; Król, W. Triterpenes as Potentially Cytotoxic Compounds. Molecules 2015, 20, 1610–1625. [Google Scholar] [CrossRef] [PubMed]
- Morais, T.; da Costa-Silva, T.; Tempone, A.; Borborema, S.; Scotti, M.; de Sousa, R.; Araujo, A.; de Oliveira, A.; de Morais, S.; Sartorelli, P.; et al. Antiparasitic Activity of Natural and Semi-Synthetic Tirucallane Triterpenoids from Schinus terebinthifolius (Anacardiaceae): Structure/Activity Relationships. Molecules 2014, 19, 5761–5776. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Monroy, M.; Jacobo-Herrera, N.; Zentella-Dehesa, A.; Hernández-Téllez, B.; Martínez-Vázquez, M. Masticadienonic and 3α-OH Masticadienoic Acids Induce Apoptosis and Inhibit Cell Proliferation and Tumor Growth in Prostate Cancer Xenografts in Vivo. Molecules 2017, 22, 1479. [Google Scholar] [CrossRef] [PubMed]
- Oviedo-Chavez, I.; Ramirez-Apan, T.; Martinez-Vazquez, M. Cytotoxic Activity and Effect on Nitric Oxide Production of Tirucallane-Type Triterpenes. J. Pharm. Pharmacol. 2005, 57, 1087–1091. [Google Scholar] [CrossRef] [PubMed]
- Dzubak, P.; Hajduch, M.; Vydra, D.; Hustova, A.; Kvasnica, M.; Biedermann, D.; Markova, L.; Urban, M.; Sarek, J. Pharmacological Activities of Natural Triterpenoids and Their Therapeutic Implications. Nat. Prod. Rep. 2006, 23, 394–411. [Google Scholar] [CrossRef] [PubMed]
- Tietze, L.F.F.; Brasche, G.; Gericke, K.M. Multicomponent reactions. In Domino Reactions in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2006. [Google Scholar]
- Dömling, A.E.; AlQahtani, A.D. General Introduction to MCRs: Past, Present, and Future. In Multicomponent Reactions in Organic Synthesis; Zhu, J., Wang, Q., Wang, M., Eds.; Wiley-VCH: Weinheim, Germany, 2015. [Google Scholar]
- Wahby, Y.; Abdel-Hamid, H.; Salah Ayoup, M. Two decades of recent advances of Passerini reactions: Synthetic and potential pharmaceutical applications. New J. Chem. 2022, 46, 1445. [Google Scholar] [CrossRef]
- Fouad, M.A.; Abdel-Hamid, H.; Ayoup, M.S. Two Decades of Recent Advances of Ugi Reactions: Synthetic and Pharmaceutical Applications. RSC Adv. 2020, 10, 42644–42681. [Google Scholar] [CrossRef] [PubMed]
- Rudick, J.G.G.; Shaabani, S.; Dömling, A. Isocyanide-based multicomponent reactions. Front. Chem. 2020, 7, 918. [Google Scholar] [CrossRef] [PubMed]
- Răzvan, C.; Ruijter, C.; Orru, R.V. Multicomponent Reactions: Advanced Tools for Sustainable Organic Synthesis. Green Chem. 2014, 16, 2958–2975. [Google Scholar]
- Reguera, L.; Attorresi, C.I.; Ramírez, J.A.; Rivera, D.G. Steroid Diversification by Multicomponent Reactions. Beilstein J. Org. Chem. 2019, 15, 1236–1256. [Google Scholar] [CrossRef] [PubMed]
- Gurrapu, S.; Walsh, W.J.; Brooks, J.M.; Jonnalagadda, S.C.; Mereddy, V.R. Synthesis of Lupane Triterpenoid Derivatives. Nat. Prod. Indian J. 2012, 8, 115–120. [Google Scholar]
- Wiemann, J.; Heller, L.; Csuk, R. An Access to a Library of Novel Triterpene Derivatives with a Promising Pharmacological Potential by Ugi and Passerini Multicomponent Reactions. Eur. J. Med. Chem. 2018, 150, 176–194. [Google Scholar] [CrossRef] [PubMed]
- Sommerwerk, S.; Heller, L.; Kuhfs, J.; Csuk, R. Selective Killing of Cancer Cells with Triterpenoic Acid Amides—The Substantial Role of an Aromatic Moiety Alignment. Eur. J. Med. Chem. 2016, 122, 452–464. [Google Scholar] [CrossRef] [PubMed]
Entry | Solvent | Time | Yield |
---|---|---|---|
1 | MeOH | 48 h | 30% |
2 | EtOH | 48 h | 57% |
3 | H2O | 72 h | NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Lopez, F.; Rodríguez-García, E.G.; García-Gutiérrez, H.A.; Gámez-Montaño, R. Plant-Derived Triterpenoid Functionalization: Synthesis of α-Acyloxycarboxamides. Chem. Proc. 2023, 14, 102. https://doi.org/10.3390/ecsoc-27-16061
Rodriguez-Lopez F, Rodríguez-García EG, García-Gutiérrez HA, Gámez-Montaño R. Plant-Derived Triterpenoid Functionalization: Synthesis of α-Acyloxycarboxamides. Chemistry Proceedings. 2023; 14(1):102. https://doi.org/10.3390/ecsoc-27-16061
Chicago/Turabian StyleRodriguez-Lopez, Fidel, Edgar G. Rodríguez-García, Hugo A. García-Gutiérrez, and Rocío Gámez-Montaño. 2023. "Plant-Derived Triterpenoid Functionalization: Synthesis of α-Acyloxycarboxamides" Chemistry Proceedings 14, no. 1: 102. https://doi.org/10.3390/ecsoc-27-16061
APA StyleRodriguez-Lopez, F., Rodríguez-García, E. G., García-Gutiérrez, H. A., & Gámez-Montaño, R. (2023). Plant-Derived Triterpenoid Functionalization: Synthesis of α-Acyloxycarboxamides. Chemistry Proceedings, 14(1), 102. https://doi.org/10.3390/ecsoc-27-16061