XRD Studies of the Morphological Changes Generated by Interface Agents for Obtaining New Scalable Sustainable Blends Based on Starch and PCL †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- -
- Corn starch (A): powder, amylase/amylopectin ratio of 30/70, Tg of 67 °C, 0.6 g/cm3 density (at 25 °C) (M.K. Group D.O.O.) (Richest Group, Shanghai, China);
- -
- Poly epsilon caprolactone (PCL): Molecular weight (Mw) of 85,000–105,000 g * mol, 3–6 melt flow index (MFI) g/10 min (160 °C, 2.16 kg) (Richest Group, Shanghai);
- -
- Maleinized polyethylene (PE-g-MA): 0.95 g/cm3 density, 1.8% maleinization degree (Lyondell Basell, Rotterdam, The Netherlands).
2.2. Blend Preparation Procedure
2.3. Characterization
- -
- X-ray Diffraction (XRD): Rigaku-Smart Lab diffractometer (Rigaku, Tokyo, Japan), acceleration voltage 45 kV and current intensity 200 mA, incident radiation CuKα1 at wavelength 1.54059 Å, in the beam configuration parallel, continuously for 2θ values between 5 and 60°, with a resolution of 0.02° and a scanning speed of 4°/min, PDXL 2.7.2.0 software.
- -
- Morphological fracture analysis: breaking in liquid nitrogen; 60 s time, on a high-resolution scanning electron microscope, SEM-QUANTA Inspect F50 (FEI, Thermo Fisher Scientific, Hillsboro, OR, USA).
3. Results and Discussions
3.1. XRD Morphology of the Individual Polymers and Those of the New Blends
- -
- Starch: 15.134 deg, 20.06 deg, 22.98 deg, 32.96 deg, 34.44 deg (five drops);
- -
- PCL: 15.57 deg, 19.188 deg, 20.68 deg, 21.37 deg, 23.69 deg (five drops).
- -
- The appearance of three new diffractions compared to one in the case of the good mixture.
- -
- The existence of a single diffraction shifted compared to three for the binary mixture.
- -
- The appearance of only one unmodified starch-describing diffraction compared to two for the binary mixture.
- -
- Greater decreases in the intensity of diffractions with values in the interval 10–56% compared to 7–36% for the binary mixture.
- -
- Disappearance of six of the eight diffractions of starch compared to five in the case of the mixture without interface agent.
- -
- None of the diffractions of the interface agent can be identified in the diffractogram of the ternary mixture.
3.2. SEM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Álvarez-Chávez, C.R.; Edwards, S.; Moure-Eraso, R.; Geiser, K. Sustainability of bio-based plastics: General comparative analysis and recommendations for improvement. J. Clean. Prod. 2012, 23, 47–56. [Google Scholar] [CrossRef]
- Dreyer, L.C.; Hauschild, M.Z.; Schierbeck, J. Characterisation of social impacts in LCA: Part 1: Development of indicators for labour rights. Int. J. Life Cycle Assess. 2010, 15, 247–259. [Google Scholar] [CrossRef]
- Directive 2009/28/EC of the European Parliament and of the Council of 5 June 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. The RED Requires the EU to Generate 20 per Cent of Energy from Renewable Sources by 2020, and Each Member State to Achieve a 10 per cent Share of Renewable Energy Sources in the Transport Sector. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:en:PDF (accessed on 15 February 2023).
- Pira, S. The future of bioplastics for packaging to 2020: Global market forecasts. Smithers Pira. 2013. Available online: https://interplasinsights.com/plastics-industry-news/smithers-pira-forecasts-global-bioplastic-packaging-market-t/ (accessed on 30 March 2023).
- Deșeurile din Plastic: O Strategie Europeană Pentru a Proteja Planeta și Cetățenii și a Sprijini Afirmarea Industriilor Noastre (europa.eu); Directiva (UE) 904/2019 si Decizia 1752/2021. Available online: https://ec.europa.eu/commission/presscorner/detail/ro/IP_18_5 (accessed on 20 January 2023).
- Hottle, T.A.; Bilec, M.M.; Landis, A.E. Sustainability assessments of bio-based polymers. Polym. Degrad. Stab. 2013, 98, 1898–1907. [Google Scholar] [CrossRef]
- Gomez, J.G.C.; Méndez, B.S.; Nikel, P.I.; Pettinari, M.J.; Prieto, M.A.; Silva, L.F. Making green polymers even greener: Towards sustainable production of polyhydroxyalkanoates from agroindustrial by-products. In Advances in Applied Biotechnology; IntechOpen Limited: London, UK, 2012. [Google Scholar]
- Ebnesajjad, S. Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications; William Andrew: Aalborg, Denmark, 2012. [Google Scholar]
- Kaplan, D.L.; Thomas, E.; Ching, C. Biodegradable Materials and Packaging; Technomic Publishing Company, Inc.: Lancaster, PA, USA, 1993.
- Degli-Innocenti, F.; Bellia, G.; Tosin, M.; Kapanen, A.; Itävaara, M. Detection of toxicity released by biodegradable plastics after composting in activated vermiculite. Polym. Degrad. Stab. 2001, 73, 101–106. [Google Scholar] [CrossRef]
- Ahamed, N.T.; Singhal, R.S.; Kulkarni, P.R.; Kale, D.D.; Pal, M. Studies on Chenopodium quinoa and Amaranthus paniculatas starch as biodegradable fillers in LDPE films. Carbohydr. Polym. 1996, 31, 157–160. [Google Scholar] [CrossRef]
- Ishiaku, U.S.; Pang, K.W.; Lee, W.S.; Ishak, Z.A.M. Mechanical properties and enzymic degradation of thermoplastic and granular sago starch filled poly (ε-caprolactone). Eur. Polym. J. 2002, 38, 393–401. [Google Scholar] [CrossRef]
- Biresaw, G.; Carriere, C.J. Correlation between mechanical adhesion and interfacial properties of starch/biodegradable polyester blends. J. Polym. Sci. Part B Polym. Phys. 2001, 39, 920–930. [Google Scholar] [CrossRef]
- Muthuraj, R.; Misra, M.; Mohanty, A.K. Biocomposite consisting of miscanthus fiber and biodegradable binary blend matrix: Compatibilization and performance evaluation. RSC Adv. 2017, 7, 27538–27548. [Google Scholar] [CrossRef]
- Muthuraj, R.; Misra, M.; Mohanty, A.K. Biodegradable compatibilized polymer blends for packaging applications: A literature review. J. Appl. Polym. Sci. 2018, 135, 45726. [Google Scholar] [CrossRef]
- MacArthur, D.E.; Waughray, D.; Stuchtey, M.R. The New Plastics Economy, Rethinking the Future of Plastics; Ellen MacArthur Foundation and McKinsey & Company: London, UK, 2016. [Google Scholar]
- Wang, A.C.; Wu, C.; Pisignano, D.; Wang, Z.L.; Persano, L. Polymer nanogenerators: Opportunities and challenges for large-scale applications. J. Appl. Polym. Sci. 2018, 135, 45674. [Google Scholar] [CrossRef]
- Dimonie, D.; Radovici, C.; Trandafir, I.; Pop, S.F.; Dumitriu, I.; Fierascu, R.; Jecu, L.; Petrea, C.; Zaharia, C.; CoŞErea, R. Some aspects concerning the silicate delamination for obtaining polymeric bio-hybrids based on starch. Rev. Roum. De Chim. 2011, 56, 685–690. [Google Scholar]
- Dimonie, D.; Petrache, M.; Damian, C.; Anton, L.; Musat, M.; Dima, Ş.-O.; Jinescu, C.; Maria, R. New evidences on the process sensitivity of some renewable blends based on starch considering their melt rheological properties. Int. J. Polym. Sci. 2016, 2016, 7873120. [Google Scholar] [CrossRef]
- Zia-Ud-Din; Xiong, H.; Fei, P. Physical and chemical modification of starches: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2691–2705. [Google Scholar] [CrossRef] [PubMed]
- Dimonie, D.; Radu, S.; Doncea, S.; Pop, F.S.; Petre, C.; Dumitriu, I.; Fierascu, R. The miscibility estimation of some nanocomposites based on starch. e-Polymers 2011, 11, 090. [Google Scholar] [CrossRef]
- Tang, X.; Alavi, S. Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr. Polym. 2011, 85, 7–16. [Google Scholar] [CrossRef]
- Rydz, J.; Musioł, M.; Zawidlak-Węgrzyńska, B.; Sikorska, W. Present and future of biodegradable polymers for food packaging applications. In Biopolymers for Food Design; Elsevier: Amsterdam, The Netherlands, 2018; pp. 431–467. [Google Scholar] [CrossRef]
- Przybysz-Romatowska, M.; Haponiuk, J.; Formela, K. Reactive extrusion of biodegradable aliphatic polyesters in the presence of free-radical-initiators: A review. Polym. Degrad. Stab. 2020, 182, 109383. [Google Scholar] [CrossRef]
- Albertsson, A.-C.; Varma, I.K. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 2003, 4, 1466–1486. [Google Scholar] [CrossRef]
- Geier, M.; Duedal, D. Guide Pratique des Matériaux Composites; Technique et Documentation; Lavoisier: Paris, France, 1985. [Google Scholar]
- Jacobsen, S.; Fritz, H.-G.; Degée, P.; Dubois, P.; Jérôme, R. Continuous Reactive Extrusion Polymerization of L-Lactide-an Engineering View; Wiley-V CH Verlag Gmbh: Weinheim, Germany, 2000. [Google Scholar]
- Maliger, R.B.; McGlashan, S.A.; Halley, P.J.; Matthew, L.G. Compatibilization of starch–polyester blends using reactive extrusion. Polym. Eng. Sci. 2006, 46, 248–263. [Google Scholar] [CrossRef]
- Xu, E.; Wu, Z.; Ding, T.; Ye, X.; Jin, Z.; Liu, D. Magnetic (Zn-St) 10Fe0ₙ (n = 1, 2, 3, 4) Framework of Macro–Mesoporous Biomaterial Prepared via Green Enzymatic Reactive Extrusion for Dye Pollutants Removal. ACS Appl. Mater. Interfaces 2019, 11, 43553–43562. [Google Scholar] [CrossRef]
- Sugih, A.K.; Picchioni, F.; Janssen, L.P.B.M.; Heeres, H.J. Synthesis of poly-(ε)-caprolactone grafted starch co-polymers by ring-opening polymerisation using silylated starch precursors. Carbohydr. Polym. 2009, 77, 267–275. [Google Scholar] [CrossRef]
- Wei, B.; Lin, Q.; Zheng, X.; Gu, X.; Zhao, L.; Li, J.; Li, Y. Reactive splicing compatibilization of immiscible polymer blends: Compatibilizer synthesis in the melt state and compatibilizer architecture effects. Polymer 2019, 185, 121952. [Google Scholar] [CrossRef]
- Singh, R.P.; Pandey, J.K.; Rutot, D.; Degée, P.; Dubois, P. Biodegradation of poly (ε-caprolactone)/starch blends and composites in composting and culture environments: The effect of compatibilization on the inherent biodegradability of the host polymer. Carbohydr. Res. 2003, 338, 1759–1769. [Google Scholar] [CrossRef]
- Kalambur, S.; Rizvi, S.S.H. An overview of starch-based plastic blends from reactive extrusion. J. Plast. Film Sheeting 2006, 22, 39–58. [Google Scholar] [CrossRef]
- Wu, C.-S. Physical properties and biodegradability of maleated-polycaprolactone/starch composite. Polym. Degrad. Stab. 2003, 80, 127–134. [Google Scholar] [CrossRef]
- Dubois, P.; Narayan, R. Biodegradable Compositions by Reactive Processing of Aliphatic Polyester/Polysaccharide Blends; Wiley-VCH Verlag: Weinheim, Germany, 2003; pp. 233–244. [Google Scholar]
- Ahmed, J.; Tiwari, B.K.; Imam, S.H.; Rao, M.A.e. Starch-Based Polymeric Materials and Nanocomposites: Chemistry, Processing, and Applications; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Moura, I.; Nogueira, R.; Bounor-Legaré, V.; Machado, A.V. Biobased grafted polyesters prepared by in situ ring-opening polymerization. React. Funct. Polym. 2011, 71, 694–703. [Google Scholar] [CrossRef]
- Yu, L.; Dean, K.; Yuan, Q.; Chen, L.; Zhang, X. Effect of compatibilizer distribution on the blends of starch/biodegradable polyesters. J. Appl. Polym. Sci. 2007, 103, 812–818. [Google Scholar] [CrossRef]
Starch | PCL | PE-g_MA | |||
---|---|---|---|---|---|
Diffraction Angle 2-Theta, deg | Intensity, cps | Diffraction Angle, 2-Theta, deg | Intensity, cps | Diffraction Angle, 2-Theta, deg | Intensity, cps |
15.134 | 3172 | 15.57 | 1293 | 19.254 | 6798 |
17.051 | 3430 | 19.188 | 3905 | 20.164 | 20,125 |
18.09 | 3270 | 20.68 | 13,721 | 21.465 | 79,673 |
20.06 | 628 | 21.37 | 70,882 | 23.748 | 16,521 |
22.98 | 31.098 | 22.006 | 10,108 | 39.73 | 1080 |
30.64 | 555 | 23.69 | 22,846 | 46.87 | 862 |
32.96 | 468 | 29.76 | 1041 | ||
34.44 | 271 | ||||
47.64 | 256 |
Diffraction Angle, 2-Theta, deg | Intensity, cps |
---|---|
19.254 | 6798 |
20.164 | 20,125 |
21.465 | 79,673 |
23.748 | 16,521 |
39.73 | 1080 |
46.87 | 862 |
Diffraction Angle, 2-Theta deg | Intensity, cps |
---|---|
9.43 | 1159 |
15.13 | 1490 |
16.989 | 1572.53 |
17.956 | 1169.08 |
19.199 | 413.9 |
21.202 | 7049 |
21.384 | 29,472 |
23.627 | 10,640 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustatea, A.; Trusca, R.; Trica, B.; Dimonie, D. XRD Studies of the Morphological Changes Generated by Interface Agents for Obtaining New Scalable Sustainable Blends Based on Starch and PCL. Chem. Proc. 2023, 13, 4. https://doi.org/10.3390/chemproc2023013004
Mustatea A, Trusca R, Trica B, Dimonie D. XRD Studies of the Morphological Changes Generated by Interface Agents for Obtaining New Scalable Sustainable Blends Based on Starch and PCL. Chemistry Proceedings. 2023; 13(1):4. https://doi.org/10.3390/chemproc2023013004
Chicago/Turabian StyleMustatea, Alina, Roxana Trusca, Bogdan Trica, and Doina Dimonie. 2023. "XRD Studies of the Morphological Changes Generated by Interface Agents for Obtaining New Scalable Sustainable Blends Based on Starch and PCL" Chemistry Proceedings 13, no. 1: 4. https://doi.org/10.3390/chemproc2023013004
APA StyleMustatea, A., Trusca, R., Trica, B., & Dimonie, D. (2023). XRD Studies of the Morphological Changes Generated by Interface Agents for Obtaining New Scalable Sustainable Blends Based on Starch and PCL. Chemistry Proceedings, 13(1), 4. https://doi.org/10.3390/chemproc2023013004