Evaluation of the Tensioactive Properties of Sodium Lignosulphonate Obtained from Spent Sulfite Liquor †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sodium Lignosulphonate Separation and Analysis
2.3. Tensioactive Behavior of Sodium Lignosulphonate
2.4. Critical Aggregation Concentration of Sodium Lignosulphonate
2.5. Emulsion Preparation
2.6. Emulsion Characterization
3. Results and Discussion
3.1. Sodium Lignosulphonate Separation and Analysis
3.2. Tensioactive Behavior of Sodium Lignosulphonate
3.3. Critical Aggregation Concentration of Sodium Lignosulphonate
3.4. Emulsion Preparation
3.5. Emulsion Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tribot, A.; Amer, G.; Abdou Alio, M.; De Baynast, H.; Delattre, C.; Pons, A.; Mathias, J.-D.; Callois, J.-M.; Vial, C.; Michaud, P.; et al. Wood-Lignin: Supply, Extraction Processes and Use as Bio-Based Material. Eur. Polym. J. 2019, 112, 228–240. [Google Scholar] [CrossRef]
- Kienberger, M.; Maitz, S.; Pichler, T.; Demmelmayer, P. Systematic Review on Isolation Processes for Technical Lignin. Processes 2021, 9, 804. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, J.; García, A.; Coz, A.; Labidi, J. Spent Sulphite Liquor Fractionation into Lignosulphonates and Fermentable Sugars by Ultrafiltration. Sep. Purif. Technol. 2015, 152, 172–179. [Google Scholar] [CrossRef]
- Abejón, R.; Rabadán, J.; Garea, A.; Irabien, A. Comparison of Supported Ionic Liquid Membranes and Polymeric Ultrafiltration and Nanofiltration Membranes for Separation of Lignin and Monosaccharides. Membranes 2020, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Fei, J.; Zheng, Y.; Xu, J.; He, H.; Ma, M.; Shi, Y.; Chen, S.; Wang, X. Water-soluble Lignosulfonates: Structure, Preparation, and Application. ChemistrySelect 2023, 8, e202204941. [Google Scholar] [CrossRef]
- Ruwoldt, J.; Planque, J.; Øye, G. Lignosulfonate Salt Tolerance and the Effect on Emulsion Stability. ACS Omega 2020, 5, 15007–15015. [Google Scholar] [CrossRef] [PubMed]
- Piombino, C.; Lange, H.; Sabuzi, F.; Galloni, P.; Conte, V.; Crestini, C. Lignosulfonate Microcapsules for Delivery and Controlled Release of Thymol and Derivatives. Molecules 2020, 25, 866. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Mishra, A.P.; Shukla, I.; Sharifi-Rad, M.; Contreras, M.D.M.; Segura-Carretero, A.; Fatti, H.; Nasrabi, N.N.; Sharifi-Rad, J. Thymol, thyme, and other plant sources: Health and potential uses. Phytother. Res. 2018, 32, 1688–1706. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Kong, Q.; Zhou, M.; Yang, D. Aggregation Behavior of Sodium Lignosulfonate in Water Solution. J. Phys. Chem. B 2010, 114, 15857–15861. [Google Scholar] [CrossRef] [PubMed]
- Ostertag, F.; Weiss, J.; McClements, D.J. Low-Energy Formation of Edible Nanoemulsions: Factors Influencing Droplet Size Produced by Emulsion Phase Inversion. J. Colloid Interface Sci. 2012, 388, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yuan, B.; Guo, M.; Yang, Q.; Nguyen, T.T.; Ji, X. Effect of Sodium Lignosulfonate on Bonding Strength and Chemical Structure of a Lignosulfonate/Chitosan-Glutaraldehyde Medium-Density Fiberboard Adhesive. Adv. Compos. Hybrid Mater. 2021, 4, 1176–1184. [Google Scholar] [CrossRef]
- Rana, D.; Neale, G.; Hornof, V. Surface Tension of Mixed Surfactant Systems: Lignosulfonate and Sodium Dodecyl Sulfate. Colloid Polym. Sci. 2002, 280, 775–778. [Google Scholar]
- Perazzo, A.; Preziosi, V.; Guido, S. Phase Inversion Emulsification: Current Understanding and Applications. Adv. Colloid Interface Sci. 2015, 222, 581–599. [Google Scholar] [CrossRef] [PubMed]
- Abd-ElGawad, A.M.; El Gendy, A.E.-N.G.; Assaeed, A.M.; Al-Rowaily, S.L.; Alharthi, A.S.; Mohamed, T.A.; Nassar, M.I.; Dewir, Y.H.; Elshamy, A.I. Phytotoxic Effects of Plant Essential Oils: A Systematic Review and Structure-Activity Relationship Based on Chemometric Analyses. Plants 2020, 10, 36. [Google Scholar] [CrossRef] [PubMed]
- Komaiko, J.; McClements, D.J. Low-Energy Formation of Edible Nanoemulsions by Spontaneous Emulsification: Factors Influencing Particle Size. J. Food Eng. 2015, 146, 122–128. [Google Scholar] [CrossRef]
- Setiati, R.; Siregar, S.; Marhaendrajana, T.; Wahyuningrum, D. Challenge Sodium Lignosulfonate Surfactants Synthesized from Bagasse as an Injection Fluid Based on Hydrophil Liphophilic Balance. IOP Conf. Ser. Mater. Sci. Eng. 2018, 434, 012083. [Google Scholar] [CrossRef]
- Martin, M.J.; Trujillo, L.A.; Garcia, M.C.; Alfaro, M.C.; Muñoz, J. Effect of Emulsifier HLB and Stabilizer Addition on the Physical Stability of Thyme Essential Oil Emulsions. J. Dispers. Sci. Technol. 2018, 39, 1627–1634. [Google Scholar] [CrossRef]
- Ruwoldt, J.; Simon, S.; Øye, G. Viscoelastic Properties of Interfacial Lignosulfonate Films and the Effect of Added Electrolytes. Colloids Surf. Physicochem. Eng. Asp. 2020, 606, 125478. [Google Scholar] [CrossRef]
Sample Name | NaLS Concentration (%) | Droplet Size (nm) | PDI | ||
---|---|---|---|---|---|
0 h | 24 h | 0 h | 24 h | ||
NaLS0 | 0 | 192 | 161 | 0.22 | 0.18 |
NaLS1 | 0.05 | 169 | 168 | 0.17 | 0.16 |
NaLS2 | 0.1 | 154 | 154 | 0.12 | 0.10 |
NaLS3 | 0.5 | 176 | 186 | 0.14 | 0.20 |
NaLS4 | 1 | 178 | 171 | 0.13 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tănase, M.A.; Trică, B.; Constantinescu-Aruxandei, D.; Oancea, F. Evaluation of the Tensioactive Properties of Sodium Lignosulphonate Obtained from Spent Sulfite Liquor. Chem. Proc. 2023, 13, 3. https://doi.org/10.3390/chemproc2023013003
Tănase MA, Trică B, Constantinescu-Aruxandei D, Oancea F. Evaluation of the Tensioactive Properties of Sodium Lignosulphonate Obtained from Spent Sulfite Liquor. Chemistry Proceedings. 2023; 13(1):3. https://doi.org/10.3390/chemproc2023013003
Chicago/Turabian StyleTănase, Maria Antonia, Bogdan Trică, Diana Constantinescu-Aruxandei, and Florin Oancea. 2023. "Evaluation of the Tensioactive Properties of Sodium Lignosulphonate Obtained from Spent Sulfite Liquor" Chemistry Proceedings 13, no. 1: 3. https://doi.org/10.3390/chemproc2023013003
APA StyleTănase, M. A., Trică, B., Constantinescu-Aruxandei, D., & Oancea, F. (2023). Evaluation of the Tensioactive Properties of Sodium Lignosulphonate Obtained from Spent Sulfite Liquor. Chemistry Proceedings, 13(1), 3. https://doi.org/10.3390/chemproc2023013003