Chitosan–Nanolignin Aerogel with Microneedles-Based Architecture Obtained from Spent Sulfite Liquor †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Synthesis Method
2.2. X-ray Diffraction Analysis
2.3. TEM and TEM-EDX Microscopy
2.4. ATR-FTIR Spectroscopy
2.5. Inductively Coupled Plasma–Optical Emission Spectrometry (ICP-OES)
2.6. Ultraviolet–Visible (UV-Vis) Spectrometry
3. Results and Discussions
3.1. Aerogel Macroscopic Aspect and X-ray Diffraction
3.2. TEM-EDX Microscopy
3.3. ATR-FTIR Spectroscopy
3.4. Inductively Coupled Plasma–Optical Emission Spectrometry (ICP-OES)
3.5. UV-Vis Spectroscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lappalainen, J.; Baudouin, D.; Hornung, U.; Schuler, J.; Melin, K.; Bjelić, S.; Vogel, F.; Konttinen, J.; Joronen, T. Sub- and Supercritical Water Liquefaction of Kraft Lignin and Black Liquor Derived Lignin. Energies 2020, 13, 3309. [Google Scholar] [CrossRef]
- Moreira, W.M.; Viotti, P.V.; Vieira, M.G.A.; Baptista, C.; Scaliante, M.; Gimenes, M.L. Hydrothermal synthesis of biobased carbonaceous composite from a blend of kraft black liquor and tannin and its application to aspirin and paracetamol removal. Colloids Surf. A-Physicochem. Eng. Asp. 2021, 608, 15. [Google Scholar] [CrossRef]
- Amriani, F.; Bani, O.; Muryanto, M.; Sari, A.A.; Sudiyani, Y. The enhancement of black liquor treatment by applying a natural flocculant and converting its sludge to a high-benefit product. Can. J. Chem. Eng. 2019, 97, 1077–1085. [Google Scholar] [CrossRef]
- Liu, X.Q.; Li, Y.; Meng, Y.; Lu, J.; Cheng, Y.; Tao, Y.A.; Wang, H.S. Pulping black liquor-based polymer hydrogel as water retention material and slow-release fertilizer. Ind. Crops Prod. 2021, 165, 7. [Google Scholar] [CrossRef]
- Wang, H.; Song, J.L.; Yan, M.Y.; Li, J.; Yang, J.M.; Huang, M.H.; Zhang, R.Y. Waste lignin-based cationic flocculants treating dyeing wastewater: Fabrication, and mechanism. Sci. Total Environ. 2023, 874, 9. [Google Scholar] [CrossRef] [PubMed]
- Ravishankar, K.; Venkatesan, M.; Desingh, R.P.; Mahalingam, A.; Sadhasivam, B.; Subramaniyam, R.; Dhamodharan, R. Biocompatible hydrogels of chitosan-alkali lignin for potential wound healing applications. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 102, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Henao, E.; Delgado, E.; Contreras, H.; Quintana, G. Polyelectrolyte Complexation versus Ionotropic Gelation for Chitosan-Based Hydrogels with Carboxymethylcellulose, Carboxymethyl Starch, and Alginic Acid. Int. J. Chem. Eng. 2018, 2018, 12. [Google Scholar] [CrossRef]
- Ganjidoust, H.; Tatsumi, K.; Yamagishi, T.; Gholian, R.N. Effect of synthetic and natural coagulant on lignin removal from pulp and paper wastewater. Water Sci. Technol. 1997, 35, 291–296. [Google Scholar] [CrossRef]
- Tran, V.T.; Le, T.M.; Trinh, T.T.N.; Tran, C.L.; Duong, Y.H.P.; Huynh, V.Q.; Le, D.T.; Le, P.K. Development of Facile and Green Fabrication of Cellulose-Chitosan Composite Aerogel and Lignin/Silica Hybrid from Agro-wastes. Fibers Polym. 2023, 24, 403–411. [Google Scholar] [CrossRef]
- Sun, X.Q.; Peng, B.; Ji, Y.; Chen, J.; Li, D.Q. Chitosan(Chitin)/Cellulose Composite Biosorbents Prepared Using Ionic Liquid for Heavy Metal Ions Adsorption. Aiche J. 2009, 55, 2062–2069. [Google Scholar] [CrossRef]
- Chatterjee, S.; Chatterjee, B.P.; Guha, A.K. Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: Binding mechanism, equilibrium and kinetics. Colloids Surf. A-Physicochem. Eng. Asp. 2007, 299, 146–152. [Google Scholar] [CrossRef]
- Sethi, S.; Medha; Singh, G.; Sharma, R.; Kaith, B.S.; Sharma, N.; Khullar, S. Fluorescent hydrogel of chitosan and gelatin cross-linked with maleic acid for optical detection of heavy metals. J. Appl. Polym. Sci. 2022, 139, 15. [Google Scholar] [CrossRef]
- Maity, S.; Parshi, N.; Prodhan, C.; Chaudhuri, K.; Ganguly, J. Characterization of a fluorescent hydrogel synthesized using chitosan, polyvinyl alcohol and 9-anthraldehyde for the selective detection and discrimination of trace Fe3+ and Fe2+ in water for live-cell imaging. Carbohydr. Polym. 2018, 193, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.W.; Papaioannou, N.; David, N.M.; Luo, H.; Gao, H.; Tanase, L.C.; Degousee, T.; Samori, P.; Sapelkin, A.; Fenwick, O.; et al. Photoelectrochemical response of carbon dots (CDs) derived from chitosan and their use in electrochemical imaging. Mater. Horiz. 2018, 5, 423–428. [Google Scholar] [CrossRef]
- Yahya, M.Z.A.; Arof, A.K. Studies on lithium acetate doped chitosan conducting polymer system. Eur. Polym. J. 2002, 38, 1191–1197. [Google Scholar] [CrossRef]
- Alkabli, J.; Rizk, M.A.; Elshaarawy, R.F.M.; El-Sayed, W.N. Ionic chitosan Schiff bases supported Pd(II) and Ru(II) complexes; production, characterization, and catalytic performance in Suzuki cross-coupling reactions. Int. J. Biol. Macromol. 2021, 184, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Qiao, M.; Meysami, S.S.; Ferrero, G.A.; Xie, F.; Meng, H.; Grobert, N.; Titirici, M.M. Low-Cost Chitosan-Derived N-Doped Carbons Boost Electrocatalytic Activity of Multiwall Carbon Nanotubes. Adv. Funct. Mater. 2018, 28, 7. [Google Scholar] [CrossRef]
- Shi, Z.J.; Li, Y.; Chen, X.L.; Han, H.W.; Yang, G. Double network bacterial cellulose hydrogel to build a biology-device interface. Nanoscale 2014, 6, 970–977. [Google Scholar] [CrossRef] [PubMed]
- Preuss, K.; Kannuchamy, V.K.; Marinovic, A.; Isaacs, M.; Wilson, K.; Abrahams, I.; Titirici, M.M. Bio-inspired carbon electro-catalysts for the oxygen reduction reaction. J. Energy Chem. 2016, 25, 228–235. [Google Scholar] [CrossRef]
- Balaban, A.T.; Banciu, M.; Pogany, I.I. Aplicatii ale Metodelor Fizice in Chimica Organica-RO (Applications of Physical Methods in Organic Chemistry); Editura Stiintifica si Enciclopedica: Bucuresti, Romania, 1983; p. 288. [Google Scholar]
Element and λ | LSLd | LSLCS | ||
---|---|---|---|---|
Value | Unit | Value | Unit | |
Na (λ = 589.592 nm) | 3.09 | %(w/w) | 0.958 | %(w/w) |
Fe (λ = 238.213 nm) | 643 | mg/Kg | 8.33 | mg/Kg |
K (λ = 766.490 nm) | 765 | mg/Kg | 218 | mg/Kg |
Mg (λ = 285.213 nm) | 76.5 | mg/Kg | 25.3 | mg/Kg |
Ca (λ = 317.933 nm) | 38.1 | mg/Kg | 31.7 | mg/Kg |
P (λ = 213.317 nm) | 20.6 | mg/Kg | 5.58 | mg/Kg |
Si (λ = 251.611 nm) | 20.2 | mg/Kg | 7.04 | mg/Kg |
Cr (λ = 267.716 nm) | 0.90 | mg/Kg | <0.3 * | mg/Kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dima, Ș.-O.; Tritean, N.; Capră, L.; Trică, B.; Sârbu, M.; Oancea, F. Chitosan–Nanolignin Aerogel with Microneedles-Based Architecture Obtained from Spent Sulfite Liquor. Chem. Proc. 2023, 13, 12. https://doi.org/10.3390/chemproc2023013012
Dima Ș-O, Tritean N, Capră L, Trică B, Sârbu M, Oancea F. Chitosan–Nanolignin Aerogel with Microneedles-Based Architecture Obtained from Spent Sulfite Liquor. Chemistry Proceedings. 2023; 13(1):12. https://doi.org/10.3390/chemproc2023013012
Chicago/Turabian StyleDima, Ștefan-Ovidiu, Naomi Tritean, Luiza Capră, Bogdan Trică, Mihai Sârbu, and Florin Oancea. 2023. "Chitosan–Nanolignin Aerogel with Microneedles-Based Architecture Obtained from Spent Sulfite Liquor" Chemistry Proceedings 13, no. 1: 12. https://doi.org/10.3390/chemproc2023013012
APA StyleDima, Ș. -O., Tritean, N., Capră, L., Trică, B., Sârbu, M., & Oancea, F. (2023). Chitosan–Nanolignin Aerogel with Microneedles-Based Architecture Obtained from Spent Sulfite Liquor. Chemistry Proceedings, 13(1), 12. https://doi.org/10.3390/chemproc2023013012