Synthesis and Evaluation of Biological Activities of Schiff Base Derivatives of 4-Aminoantipyrine and Cinnamaldehydes †
Abstract
:1. Introduction
2. Methods
2.1. General
2.2. Synthesis
2.3. Biological Evaluation
2.3.1. Evaluation of Antitumoral Activity
2.3.2. Evaluation of Antibacterial Activity
3. Results and Discussion
3.1. Synthesis of Schiff Base of 4-Aminoantipyrine
3.2. Antitumor Activity Evaluation
3.3. Antibacterial Activity Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okey, N.C.; Obasi, N.L.; Ejikeme, P.M.; Ndinteh, D.T.; Ramasami, P.; Sherif, E.-S.M.; Akpan, E.D.; Ebenso, E.E. Evaluation of some amino benzoic acid and 4-aminoantipyrine derived Schiff bases as corrosion inhibitors for mild steel in acidic medium: Synthesis, experimental and computational studies. J. Mol. Liq. 2020, 315, 113773. [Google Scholar] [CrossRef]
- Raczuk, E.; Dmochowska, B.; Samaszko-Fiertek, J.; Madaj, J. Different Schiff Bases—Structure, Importance and Classification. Molecules 2022, 27, 787. [Google Scholar] [CrossRef] [PubMed]
- Ceramella, J.; Iacopetta, D.; Catalano, A.; Cirillo, F.; Lappano, R.; Sinicropi, M.S. A Review on the Antimicrobial Activity of Schiff Bases: Data Collection and Recent Studies. Antibiotics 2022, 11, 191. [Google Scholar] [CrossRef] [PubMed]
- Catalano, A.; Sinicropi, M.S.; Iacopetta, D.; Ceramella, J.; Mariconda, A.; Rosano, C.; Scali, E.; Saturnino, C.; Longo, P. A Review on the Advancements in the Field of Metal Complexes with Schiff Bases as Antiproliferative Agents. Appl. Sci. 2021, 11, 6027. [Google Scholar] [CrossRef]
- Matela, G. Schiff Bases and Complexes: A Review on Anti-Cancer Activity. Anticancer Agents Med. Chem. 2020, 20, 1908–1917. [Google Scholar] [CrossRef]
- Murtaza, G.; Mumtaz, A.; Khan, F.A.; Ahmad, S.; Azhar, S.; Najam-Ul-Haq, M.; Atif, M.; Khan, S.A.; Maalik, A.; Alam, F.; et al. Recent pharmacological advancements in Schiff bases: A Review. Acta Pol. Pharm.-Drug Res. 2014, 71, 531–535. [Google Scholar]
- Kajal, A.; Bala, S.; Kamboj, S.; Sharma, N.; Saini, V. Schiff Bases: A Versatile Pharmacophore. J. Catal. 2013, 2013, 893512. [Google Scholar] [CrossRef]
- Teran, R.; Guevara, R.; Mora, J.; Dobronski, L.; Barreiro-Costa, O.; Beske, T.; Pérez-Barrera, J.; Araya-Maturana, R.; Rojas-Silva, P.; Poveda, A.; et al. Characterization of Antimicrobial, Antioxidant, and Leishmanicidal Activities of Schiff Base Derivatives of 4-Aminoantipyrine. Molecules 2019, 24, 2696. [Google Scholar] [CrossRef]
- Afridi, H.H.; Shoaib, M.; Al-Joufi, F.A.; Shah, S.W.A.; Hussain, H.; Ullah, A.; Zahoor, M.; Mughal, E.U. Synthesis and Investigation of the Analgesic Potential of Enantiomerically Pure Schiff Bases: A Mechanistic Approach. Molecules 2022, 27, 5206. [Google Scholar] [CrossRef]
- Shawky, A.M.; Abourehab, M.A.S.; Abdalla, A.N.; Gouda, A.M. Optimization of pyrrolizine-based Schiff bases with 4-thiazolidinone motif: Design, synthesis and investigation of cytotoxicity and anti-inflammatory potency. Eur. J. Med. Chem. 2020, 185, 111780. [Google Scholar] [CrossRef]
- Mermer, A.; Demirbas, N.; Uslu, H.; Demirbas, A.; Ceylan, S.; Sirin, Y. Synthesis of novel Schiff bases using green chemistry techniques; antimicrobial, antioxidant, antiurease activity screening and molecular docking studies. J. Mol. Struct. 2019, 1181, 412–422. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Xu, F.-Z.; Zhu, Y.-Y.; Song, B.; Luo, D.; Yu, G.; Chen, S.; Xue, W.; Wu, J. Pyrazolo [3,4-d]pyrimidine derivatives containing a Schiff base moiety as potential antiviral agents. Bioorg. Med. Chem. Lett. 2018, 28, 2979–2984. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Fan, L.; Pan, Z.; Fan, S.; Shi, L.; Li, X.; Zhao, J.; Wu, L.; Yang, G.; Xu, C. Synthesis of Novel Indole Schiff Base Compounds and Their Antifungal Activities. Molecules 2022, 27, 6858. [Google Scholar] [CrossRef] [PubMed]
- Laxminarayan, R. The overlooked pandemic of antimicrobial resistance. Lancet 2022, 399, 606–607. [Google Scholar] [CrossRef] [PubMed]
- Nadimpalli, M.L.; Chan, C.W.; Doron, S. Antibiotic resistance: A call to action to prevent the next epidemic of inequality. Nat. Med. 2021, 27, 187–188. [Google Scholar] [CrossRef]
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report: Early Implementation 2020; World Health Organization: Geneva, Switzerland, 2020; p. 180. [Google Scholar]
- Cohen, T.L. The Next Pandemic: A pragmatic and ethical discussion about the looming threat of antibiotic resistance. Voices Bioeth. 2022, 8. [Google Scholar] [CrossRef]
- Vaughn, V.M.; Gandhi, T.N.; Petty, L.A.; Patel, P.K.; Prescott, H.C.; Malani, A.N.; Ratz, D.; McLaughlin, E.; Chopra, V.; Flanders, S.A. Empiric Antibacterial Therapy and Community-onset Bacterial Coinfection in Patients Hospitalized with Coronavirus Disease 2019 (COVID-19): A Multi-hospital Cohort Study. Clin. Infect. Dis. 2021, 72, e533–e541. [Google Scholar] [CrossRef]
- Ghimpețeanu, O.M.; Pogurschi, E.N.; Popa, D.C.; Dragomir, N.; Drăgotoiu, T.; Mihai, O.D.; Petcu, C.D. Antibiotic Use in Livestock and Residues in Food—A Public Health Threat: A Review. Foods 2022, 11, 1430. [Google Scholar] [CrossRef]
- Iacopetta, D.; Ceramella, J.; Catalano, A.; Saturnino, C.; Bonomo, M.G.; Franchini, C.; Sinicropi, M.S. Schiff Bases: Interesting Scaffolds with Promising Antitumoral Properties. Appl. Sci. 2021, 11, 1877. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, L.; Xie, N.; Nice, E.C.; Zhang, T.; Cui, Y.; Huang, C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct. Target. Ther. 2020, 5, 113. [Google Scholar] [CrossRef]
- Reşit, Ç.; Başaran, E.; Boğa, M.; Erdoğan, Ö.; Çınar, E.; Çevik, Ö. Schiff Base Derivatives of 4-Aminoantipyrine as Promising Molecules: Synthesis, Structural Characterization, and Biological Activities. Russ. J. Bioorg. Chem. 2022, 48, 334–344. [Google Scholar] [CrossRef]
- Rashmi, A.; Rishi, S.; Abhishek, T.; Ajmer Singh, G.; Balraj, S.; Sandeep, A.; Rajwinder, K. Design and synthesis of novel 4-aminophenazone Schiff bases by grinding technique as prospective anti-inflammatory agents. J. Appl. Pharm. Sci. 2021, 11, 48–53. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; ISBN 1562388363. [Google Scholar]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Gottardi, W.; Klotz, S.; Nagl, M. Superior bactericidal activity of N-bromine compounds compared to their N-chlorine analogues can be reversed under protein load. J. Appl. Microbiol. 2014, 116, 1427–1437. [Google Scholar] [CrossRef] [PubMed]
Bacteria Strain | Antibiotic |
---|---|
E. coli ATCC 25922 | Carbenicillin (100 µg/mL) |
S. aureus ATCC 25923 | |
L. monocytogenes ATCC 13932 | |
B. cereus | Chloramphenicol (20 µg/mL) |
E. faecalis ATCC 29212 | Tetracycline (10 µg/mL) |
Compound | R1 | R2 | Appearance/Color | m.p. (°C) | Yield 1 (%) |
---|---|---|---|---|---|
3a | H | H | yellow crystals | 162–163 | 90.0 |
3b | H | 2-NO2 | red crystals | 164–165 | 84.8 |
3c | H | 2-OMe | yellow crystals | 175–176 | 85.7 |
3d | H | 4-NMe2 | orange crystals | 179–180 | 97.5 |
3e | H | 3-OMe-4-OAc | yellow crystals | 240–241 | 81.7 |
3f | Br | H | yellow crystals | 149–150 | 86.9 |
3g | Me | H | yellow crystals | 169–170 | 94.5 |
3h | H | 4-NO2 | red crystals | 217–218 | 98.2 |
Compounds | MDA-MB-231 | SK-MEL-103 | HCT116 | HT29 | HeLa | NIH3T3 |
---|---|---|---|---|---|---|
3a | 68.5 | 49.2 | 53.9 | 137.7 | 62.9 | 168 |
3b | 30.2 | 24.5 | 44.2 | 72.7 | 30.7 | 116 |
3c | 41.3 | 25.6 | 46.6 | 137 | 43.4 | 164 |
3d | 114 | 101 | 71 | 123 | 113 | 131 |
3e | 204 | 139 | 320 | NA | 204 | NA |
3f | 18.1 | 5.9 | 4.8 | NA | 6.5 | 20.1 |
3g | NA | NA | NA | NA | NA | NA |
3h | 47.6 | 44.5 | 24.8 | 125 | 90.9 | NA |
DMSO b | 2.4 | 2.2 | 1.3 | 2.3 | 1.6 | 2.0 |
Bacteria strain | 3a | 3b | 3c | 3d | 3e | 3f | 3g | 3h |
---|---|---|---|---|---|---|---|---|
E. faecalis ATCC 29212 | NE | NE | NE | NE | NE | <100 b | NE | NE |
E. coli ATCC 25922 | NE | NE | NE | NE | NE | 15.6 b | NE | NE |
S. aureus ATCC 25923 | NE | NE | NE | NE | NE | <100 b | NE | NE |
L. monocytogenes ATCC 13932 | NE | NE | NE | NE | NE | <100 c | NE | 250 b |
B. cereus | NE | NE | NE | NE | NE | <100 b | NE | 250 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Llanos, E.; Carrera-Pacheco, S.E.; González-Pastor, R.; Zúñiga-Miranda, J.; Rodríguez-Pólit, C.; Romero-Benavides, J.C.; Heredia-Moya, J. Synthesis and Evaluation of Biological Activities of Schiff Base Derivatives of 4-Aminoantipyrine and Cinnamaldehydes. Chem. Proc. 2022, 12, 43. https://doi.org/10.3390/ecsoc-26-13684
Aguilar-Llanos E, Carrera-Pacheco SE, González-Pastor R, Zúñiga-Miranda J, Rodríguez-Pólit C, Romero-Benavides JC, Heredia-Moya J. Synthesis and Evaluation of Biological Activities of Schiff Base Derivatives of 4-Aminoantipyrine and Cinnamaldehydes. Chemistry Proceedings. 2022; 12(1):43. https://doi.org/10.3390/ecsoc-26-13684
Chicago/Turabian StyleAguilar-Llanos, Esteban, Saskya E. Carrera-Pacheco, Rebeca González-Pastor, Johana Zúñiga-Miranda, Cristina Rodríguez-Pólit, Juan Carlos Romero-Benavides, and Jorge Heredia-Moya. 2022. "Synthesis and Evaluation of Biological Activities of Schiff Base Derivatives of 4-Aminoantipyrine and Cinnamaldehydes" Chemistry Proceedings 12, no. 1: 43. https://doi.org/10.3390/ecsoc-26-13684
APA StyleAguilar-Llanos, E., Carrera-Pacheco, S. E., González-Pastor, R., Zúñiga-Miranda, J., Rodríguez-Pólit, C., Romero-Benavides, J. C., & Heredia-Moya, J. (2022). Synthesis and Evaluation of Biological Activities of Schiff Base Derivatives of 4-Aminoantipyrine and Cinnamaldehydes. Chemistry Proceedings, 12(1), 43. https://doi.org/10.3390/ecsoc-26-13684