Synthesis and Evaluation of Biological Activities of Schiff Base Derivatives of 4-Aminoantipyrine and Cinnamaldehydes †
Abstract
1. Introduction
2. Methods
2.1. General
2.2. Synthesis
2.3. Biological Evaluation
2.3.1. Evaluation of Antitumoral Activity
2.3.2. Evaluation of Antibacterial Activity
3. Results and Discussion
3.1. Synthesis of Schiff Base of 4-Aminoantipyrine
3.2. Antitumor Activity Evaluation
3.3. Antibacterial Activity Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okey, N.C.; Obasi, N.L.; Ejikeme, P.M.; Ndinteh, D.T.; Ramasami, P.; Sherif, E.-S.M.; Akpan, E.D.; Ebenso, E.E. Evaluation of some amino benzoic acid and 4-aminoantipyrine derived Schiff bases as corrosion inhibitors for mild steel in acidic medium: Synthesis, experimental and computational studies. J. Mol. Liq. 2020, 315, 113773. [Google Scholar] [CrossRef]
- Raczuk, E.; Dmochowska, B.; Samaszko-Fiertek, J.; Madaj, J. Different Schiff Bases—Structure, Importance and Classification. Molecules 2022, 27, 787. [Google Scholar] [CrossRef] [PubMed]
- Ceramella, J.; Iacopetta, D.; Catalano, A.; Cirillo, F.; Lappano, R.; Sinicropi, M.S. A Review on the Antimicrobial Activity of Schiff Bases: Data Collection and Recent Studies. Antibiotics 2022, 11, 191. [Google Scholar] [CrossRef] [PubMed]
- Catalano, A.; Sinicropi, M.S.; Iacopetta, D.; Ceramella, J.; Mariconda, A.; Rosano, C.; Scali, E.; Saturnino, C.; Longo, P. A Review on the Advancements in the Field of Metal Complexes with Schiff Bases as Antiproliferative Agents. Appl. Sci. 2021, 11, 6027. [Google Scholar] [CrossRef]
- Matela, G. Schiff Bases and Complexes: A Review on Anti-Cancer Activity. Anticancer Agents Med. Chem. 2020, 20, 1908–1917. [Google Scholar] [CrossRef]
- Murtaza, G.; Mumtaz, A.; Khan, F.A.; Ahmad, S.; Azhar, S.; Najam-Ul-Haq, M.; Atif, M.; Khan, S.A.; Maalik, A.; Alam, F.; et al. Recent pharmacological advancements in Schiff bases: A Review. Acta Pol. Pharm.-Drug Res. 2014, 71, 531–535. [Google Scholar]
- Kajal, A.; Bala, S.; Kamboj, S.; Sharma, N.; Saini, V. Schiff Bases: A Versatile Pharmacophore. J. Catal. 2013, 2013, 893512. [Google Scholar] [CrossRef]
- Teran, R.; Guevara, R.; Mora, J.; Dobronski, L.; Barreiro-Costa, O.; Beske, T.; Pérez-Barrera, J.; Araya-Maturana, R.; Rojas-Silva, P.; Poveda, A.; et al. Characterization of Antimicrobial, Antioxidant, and Leishmanicidal Activities of Schiff Base Derivatives of 4-Aminoantipyrine. Molecules 2019, 24, 2696. [Google Scholar] [CrossRef]
- Afridi, H.H.; Shoaib, M.; Al-Joufi, F.A.; Shah, S.W.A.; Hussain, H.; Ullah, A.; Zahoor, M.; Mughal, E.U. Synthesis and Investigation of the Analgesic Potential of Enantiomerically Pure Schiff Bases: A Mechanistic Approach. Molecules 2022, 27, 5206. [Google Scholar] [CrossRef]
- Shawky, A.M.; Abourehab, M.A.S.; Abdalla, A.N.; Gouda, A.M. Optimization of pyrrolizine-based Schiff bases with 4-thiazolidinone motif: Design, synthesis and investigation of cytotoxicity and anti-inflammatory potency. Eur. J. Med. Chem. 2020, 185, 111780. [Google Scholar] [CrossRef]
- Mermer, A.; Demirbas, N.; Uslu, H.; Demirbas, A.; Ceylan, S.; Sirin, Y. Synthesis of novel Schiff bases using green chemistry techniques; antimicrobial, antioxidant, antiurease activity screening and molecular docking studies. J. Mol. Struct. 2019, 1181, 412–422. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Xu, F.-Z.; Zhu, Y.-Y.; Song, B.; Luo, D.; Yu, G.; Chen, S.; Xue, W.; Wu, J. Pyrazolo [3,4-d]pyrimidine derivatives containing a Schiff base moiety as potential antiviral agents. Bioorg. Med. Chem. Lett. 2018, 28, 2979–2984. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Fan, L.; Pan, Z.; Fan, S.; Shi, L.; Li, X.; Zhao, J.; Wu, L.; Yang, G.; Xu, C. Synthesis of Novel Indole Schiff Base Compounds and Their Antifungal Activities. Molecules 2022, 27, 6858. [Google Scholar] [CrossRef] [PubMed]
- Laxminarayan, R. The overlooked pandemic of antimicrobial resistance. Lancet 2022, 399, 606–607. [Google Scholar] [CrossRef] [PubMed]
- Nadimpalli, M.L.; Chan, C.W.; Doron, S. Antibiotic resistance: A call to action to prevent the next epidemic of inequality. Nat. Med. 2021, 27, 187–188. [Google Scholar] [CrossRef]
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report: Early Implementation 2020; World Health Organization: Geneva, Switzerland, 2020; p. 180. [Google Scholar]
- Cohen, T.L. The Next Pandemic: A pragmatic and ethical discussion about the looming threat of antibiotic resistance. Voices Bioeth. 2022, 8. [Google Scholar] [CrossRef]
- Vaughn, V.M.; Gandhi, T.N.; Petty, L.A.; Patel, P.K.; Prescott, H.C.; Malani, A.N.; Ratz, D.; McLaughlin, E.; Chopra, V.; Flanders, S.A. Empiric Antibacterial Therapy and Community-onset Bacterial Coinfection in Patients Hospitalized with Coronavirus Disease 2019 (COVID-19): A Multi-hospital Cohort Study. Clin. Infect. Dis. 2021, 72, e533–e541. [Google Scholar] [CrossRef]
- Ghimpețeanu, O.M.; Pogurschi, E.N.; Popa, D.C.; Dragomir, N.; Drăgotoiu, T.; Mihai, O.D.; Petcu, C.D. Antibiotic Use in Livestock and Residues in Food—A Public Health Threat: A Review. Foods 2022, 11, 1430. [Google Scholar] [CrossRef]
- Iacopetta, D.; Ceramella, J.; Catalano, A.; Saturnino, C.; Bonomo, M.G.; Franchini, C.; Sinicropi, M.S. Schiff Bases: Interesting Scaffolds with Promising Antitumoral Properties. Appl. Sci. 2021, 11, 1877. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, L.; Xie, N.; Nice, E.C.; Zhang, T.; Cui, Y.; Huang, C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct. Target. Ther. 2020, 5, 113. [Google Scholar] [CrossRef]
- Reşit, Ç.; Başaran, E.; Boğa, M.; Erdoğan, Ö.; Çınar, E.; Çevik, Ö. Schiff Base Derivatives of 4-Aminoantipyrine as Promising Molecules: Synthesis, Structural Characterization, and Biological Activities. Russ. J. Bioorg. Chem. 2022, 48, 334–344. [Google Scholar] [CrossRef]
- Rashmi, A.; Rishi, S.; Abhishek, T.; Ajmer Singh, G.; Balraj, S.; Sandeep, A.; Rajwinder, K. Design and synthesis of novel 4-aminophenazone Schiff bases by grinding technique as prospective anti-inflammatory agents. J. Appl. Pharm. Sci. 2021, 11, 48–53. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; ISBN 1562388363. [Google Scholar]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Gottardi, W.; Klotz, S.; Nagl, M. Superior bactericidal activity of N-bromine compounds compared to their N-chlorine analogues can be reversed under protein load. J. Appl. Microbiol. 2014, 116, 1427–1437. [Google Scholar] [CrossRef] [PubMed]
Bacteria Strain | Antibiotic |
---|---|
E. coli ATCC 25922 | Carbenicillin (100 µg/mL) |
S. aureus ATCC 25923 | |
L. monocytogenes ATCC 13932 | |
B. cereus | Chloramphenicol (20 µg/mL) |
E. faecalis ATCC 29212 | Tetracycline (10 µg/mL) |
Compound | R1 | R2 | Appearance/Color | m.p. (°C) | Yield 1 (%) |
---|---|---|---|---|---|
3a | H | H | yellow crystals | 162–163 | 90.0 |
3b | H | 2-NO2 | red crystals | 164–165 | 84.8 |
3c | H | 2-OMe | yellow crystals | 175–176 | 85.7 |
3d | H | 4-NMe2 | orange crystals | 179–180 | 97.5 |
3e | H | 3-OMe-4-OAc | yellow crystals | 240–241 | 81.7 |
3f | Br | H | yellow crystals | 149–150 | 86.9 |
3g | Me | H | yellow crystals | 169–170 | 94.5 |
3h | H | 4-NO2 | red crystals | 217–218 | 98.2 |
Compounds | MDA-MB-231 | SK-MEL-103 | HCT116 | HT29 | HeLa | NIH3T3 |
---|---|---|---|---|---|---|
3a | 68.5 | 49.2 | 53.9 | 137.7 | 62.9 | 168 |
3b | 30.2 | 24.5 | 44.2 | 72.7 | 30.7 | 116 |
3c | 41.3 | 25.6 | 46.6 | 137 | 43.4 | 164 |
3d | 114 | 101 | 71 | 123 | 113 | 131 |
3e | 204 | 139 | 320 | NA | 204 | NA |
3f | 18.1 | 5.9 | 4.8 | NA | 6.5 | 20.1 |
3g | NA | NA | NA | NA | NA | NA |
3h | 47.6 | 44.5 | 24.8 | 125 | 90.9 | NA |
DMSO b | 2.4 | 2.2 | 1.3 | 2.3 | 1.6 | 2.0 |
Bacteria strain | 3a | 3b | 3c | 3d | 3e | 3f | 3g | 3h |
---|---|---|---|---|---|---|---|---|
E. faecalis ATCC 29212 | NE | NE | NE | NE | NE | <100 b | NE | NE |
E. coli ATCC 25922 | NE | NE | NE | NE | NE | 15.6 b | NE | NE |
S. aureus ATCC 25923 | NE | NE | NE | NE | NE | <100 b | NE | NE |
L. monocytogenes ATCC 13932 | NE | NE | NE | NE | NE | <100 c | NE | 250 b |
B. cereus | NE | NE | NE | NE | NE | <100 b | NE | 250 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Llanos, E.; Carrera-Pacheco, S.E.; González-Pastor, R.; Zúñiga-Miranda, J.; Rodríguez-Pólit, C.; Romero-Benavides, J.C.; Heredia-Moya, J. Synthesis and Evaluation of Biological Activities of Schiff Base Derivatives of 4-Aminoantipyrine and Cinnamaldehydes. Chem. Proc. 2022, 12, 43. https://doi.org/10.3390/ecsoc-26-13684
Aguilar-Llanos E, Carrera-Pacheco SE, González-Pastor R, Zúñiga-Miranda J, Rodríguez-Pólit C, Romero-Benavides JC, Heredia-Moya J. Synthesis and Evaluation of Biological Activities of Schiff Base Derivatives of 4-Aminoantipyrine and Cinnamaldehydes. Chemistry Proceedings. 2022; 12(1):43. https://doi.org/10.3390/ecsoc-26-13684
Chicago/Turabian StyleAguilar-Llanos, Esteban, Saskya E. Carrera-Pacheco, Rebeca González-Pastor, Johana Zúñiga-Miranda, Cristina Rodríguez-Pólit, Juan Carlos Romero-Benavides, and Jorge Heredia-Moya. 2022. "Synthesis and Evaluation of Biological Activities of Schiff Base Derivatives of 4-Aminoantipyrine and Cinnamaldehydes" Chemistry Proceedings 12, no. 1: 43. https://doi.org/10.3390/ecsoc-26-13684
APA StyleAguilar-Llanos, E., Carrera-Pacheco, S. E., González-Pastor, R., Zúñiga-Miranda, J., Rodríguez-Pólit, C., Romero-Benavides, J. C., & Heredia-Moya, J. (2022). Synthesis and Evaluation of Biological Activities of Schiff Base Derivatives of 4-Aminoantipyrine and Cinnamaldehydes. Chemistry Proceedings, 12(1), 43. https://doi.org/10.3390/ecsoc-26-13684