Synthesis, Insecticidal Activity and Computational Studies of Eugenol-Based Insecticides †
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Compounds 3a–c
2.2. Biological Activity of Compounds 3a–c
2.3. Inverted Virtual Screening Results
2.4. Molecular Dynamics Simulations and Free Energy Calculation Results
3. Material and Methods
3.1. Typical Procedure for the Preparation of Compounds 3a–c (Illustrated for 3a)
3.2. Biological Assays
3.3. Docking and Inverted Virtual Screening Studies
3.4. Molecular Dynamics Simulations and Free Energy Calculations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Cao, A.; Yan, D.; Ouyang, C.; Wang, Q.; Li, Y. Overview of mechanisms and uses of biopesticides. Int. J. Pest Manag. 2021, 67, 65–72. [Google Scholar] [CrossRef]
- Lengai, G.M.W.; Muthomi, J.W.; Mbega, E.R. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci. Afr. 2020, 7, e00239. [Google Scholar] [CrossRef]
- Salman, M.; Abbas, R.Z.; Israr, M.; Abbas, A.; Mehmood, K.; Khan, M.K.; Sindhu, Z.D.; Hussaind, R.; Saleemie, M.K.; Shaha, S. Repellent and acaricidal activity of essential oils and their components against Rhipicephalus ticks in cattle. Vet. Parasitol. 2020, 283, 109178. [Google Scholar] [CrossRef] [PubMed]
- Chaieb, K.; Hajlaoui, H.; Zmantar, T.; Ben Kahla-Nakbi, A.; Rouabhia, M.; Mahdouani, K.; Bakhrouf, A. The chemical composition and biological activity of clove essential oil, Eugenia Caryophyllata (Syzigium Aromaticum L. Myrtaceae): A short review. Phytother. Res. 2007, 21, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Natal, C.M.; Fernandes, M.J.G.; Pinto, N.F.S.; Pereira, R.B.; Vieira, T.F.; Rodrigues, A.R.O.; Pereira, D.M.; Sousa, S.F.; Fortes, A.G.; Castanheira, E.M.S.; et al. New carvacrol and thymol derivatives as potential insecticides: Synthesis, biological activity, computational studies and nanoencapsulation. RSC Adv. 2021, 11, 34024–34035. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Analysis of the synergistic antifungal mechanism of eugenol and citral. LWT Food Sci. Technol. 2020, 123, 109128. [Google Scholar] [CrossRef]
- Lee, M.Y. Essential oils as repellents against arthropods. Biomed. Res. Int. 2018, 2018, 6860271. [Google Scholar] [CrossRef]
- Fernandes, M.J.G.; Pereira, R.B.; Pereira, D.M.; Fortes, A.G.; Castanheira, E.M.S.; Gonçalves, M.S.T. New eugenol derivatives with enhanced insecticidal activity. Int. J. Mol. Sci. 2020, 21, 9257. [Google Scholar] [CrossRef]
- Pereira, R.B.; Pinto, N.F.S.; Fernandes, M.J.G.; Vieira, T.F.; Rodrigues, A.R.O.; Pereira, D.M.; Sousa, S.F.; Castanheira, E.M.S.; Fortes, A.G.; Gonçalves, M.S.T. Amino alcohols from eugenol as potential semisynthetic insecticides: Chemical, biological and computational insights. Molecules 2021, 26, 6616. [Google Scholar] [CrossRef]
- Coelho, C.M.M.; Pereira, R.B.; Vieira, T.F.; Teixeira, C.M.; Fernandes, M.J.G.; Rodrigues, A.R.O.; Pereira, D.M.; Sousa, S.F.; Fortes, A.G.; Castanheira, E.M.S.; et al. Synthesis, computational and nanoencapsulation studies on eugenol-derived insecticides. New J. Chem. 2022, 46, 14375–14387. [Google Scholar] [CrossRef]
- Fernandes, M.J.G.; Pereira, R.B.; Rodrigues, A.R.O.; Vieira, T.F.; Fortes, A.G.; Pereira, D.M.; Sousa, S.F.; Gonçalves, M.S.T.; Castanheira, E.M.S. Liposomal formulations loaded with an eugenol derivative for application as insecticides: Encapsulation studies and in silico identification of protein targets. Nanomaterials 2022, 12, 3583. [Google Scholar] [CrossRef] [PubMed]
- Ramos, R.S.; Costa, J.S.; Silva, R.C.; Costa, G.V.; Rodrigues, A.B.L.; Rabelo, E.M.; Souto, R.N.P.; Taft, C.A.; Silva, C.H.T.P.; Rosa, J.M.C.; et al. Identification of potential inhibitors from Pyriproxyfen with insecticidal activity by virtual screening. Pharmaceuticals 2019, 12, 20. [Google Scholar] [CrossRef] [PubMed]
- Riva, C.; Suzanne, P.; Charpentier, G.; Dulin, F.; Halm-Lemeille, M.P.; Sopkova-de Oliveira Santos, J. In silico chemical library screening and experimental validation of novel compounds with potential varroacide activities. Pestic. Biochem. Physiol. 2019, 160, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Correy, G.J.; Zaidman, D.; Harmelin, A.; Carvalho, S.; Mabbitt, P.D.; Viviane, C.; James, P.J.; Kotze, A.C.; Jackson, C.J.; London, N. Overcoming insecticide resistance through computational inhibitor design. Proc. Natl. Acad. Sci. USA 2019, 116, 21012–21021. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Yao, Y.; Wang, J.; Li, Y.; Li, G.; Wang, Y. Identification of novel potential β-N-acetyl-D-hexosaminidase inhibitors by virtual screening, molecular dynamics simulation and MM-PBSA calculations. Int. J. Mol. Sci. 2012, 13, 4545–4563. [Google Scholar] [CrossRef]
- Dong, L.; Shen, S.; Xu, Y.; Wang, L.; Yang, Q.; Zhang, J.; Lu, H. Identification of novel insect β-N-acetylhexosaminidase OfHex1 inhibitors based on virtual screening, biological evaluation, and molecular dynamics simulation. J. Biomol. Struct. Dyn. 2021, 39, 1735–1743. [Google Scholar] [CrossRef]
- Dong, Y.; Jiang, X.; Liu, T.; Ling, Y.; Yang, Q.; Zhang, L.; He, X. Structure-based virtual screening, compound synthesis, and bioassay for the design of chitinase inhibitors. J. Agric. Food Chem. 2018, 66, 3351–3357. [Google Scholar] [CrossRef]
- Hu, X.; Yin, B.; Cappelle, K.; Swevers, L.; Smagghe, G.; Yang, X.; Zhang, L. Identification of novel agonists and antagonists of the ecdysone receptor by virtual screening. J. Mol. Graph. Model. 2018, 81, 77–85. [Google Scholar] [CrossRef]
- Harada, T.; Nakagawa, Y.; Ogura, T.; Yamada, Y.; Ohe, T.; Miyagawa, H. Virtual screening for ligands of the insect molting hormone receptor. J. Chem. Inf. Model. 2011, 51, 296–305. [Google Scholar] [CrossRef]
- Min, J.; Lin, D.; Zhang, Q.; Zhang, J.; Yu, Z. Structure-based virtual screening of novel inhibitors of the uridyltransferase activity of Xanthomonas oryzae pv. oryzae GlmU. Eur. J. Med. Chem. 2012, 53, 150–158. [Google Scholar] [CrossRef]
- Offermann, L.R.; Chan, S.L.; Osinski, T.; Tan, Y.W.; Chew, F.T.; Sivaraman, J.; Mok, Y.K.; Minor, W.; Chruszcz, M. The major cockroach allergen Bla g 4 binds tyramine and octopamine. Mol. Immunol. 2014, 60, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Laughlin, J.D.; Ha, T.S.; Jones, D.N.M.; Smith, D.P. Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell 2008, 133, 1255–1265. [Google Scholar] [CrossRef] [PubMed]
- Oliferenko, P.V.; Oliferenko, A.A.; Poda, G.I.; Osolodkin, D.I.; Pillai, G.G.; Bernier, U.R.; Tsikolia, M.; Agramonte, N.M.; Clark, G.G.; Linthicum, K.J.; et al. Promising Aedes aegypti repellent chemotypes identified through integrated QSAR, virtual screening, synthesis, and bioassay. PLoS ONE 2013, 8, e64547. [Google Scholar] [CrossRef] [PubMed]
- Joshi, T.; Joshi, T.; Sharma, P.; Chandra, S.; Pande, V. Molecular docking and molecular dynamics simulation approach to screen natural compounds for inhibition of Xanthomonas oryzae pv. Oryzae by targeting peptide deformylase. J. Biomol. Struct. Dyn. 2021, 39, 823–840. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, Y.X.; Kang, T.; Sun, Y.N.; Li, J.Z.; Ye, F. Identification of novel inhibitors of p-hydroxyphenylpyruvate dioxygenase using receptor-based virtual screening. J. Taiwan Inst. Chem. Eng. 2019, 103, 33–43. [Google Scholar] [CrossRef]
- Fattouch, S.; Raboudi-Fattouch, F.; Ponce, J.V.; Forment, J.V.; Lukovic, D.; Marzouki, N.; Vidal, D.R. Concentration dependent effects of commonly used pesticides on activation versus inhibition of the quince (Cydonia oblonga) polyphenol oxidase. Food Chem. Toxicol. 2010, 48, 957–963. [Google Scholar] [CrossRef]
- Cai, J.; Du, X.; Wang, C.; Lin, J.; Du, X. Identification of potential Helicoverpa armigera (Lepidoptera: Noctuidae) sterol carrier protein-2 inhibitors through high-throughput virtual screening. J. Econ. Entomol. 2017, 110, 1779–1784. [Google Scholar] [CrossRef]
- Shen, H.; Li, Z.; Jiang, Y.; Pan, X.; Wu, J.; Cristofori-Armstrong, B.; Smith, J.J.; Chin, Y.K.Y.; Lei, J.; Zhou, Q.; et al. Structural basis for the modulation of voltage-gated sodium channels by animal toxins. Science 2018, 362, eaau2596. [Google Scholar] [CrossRef]
- Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking 1, F.E. Cohen (Ed). J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef]
- Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. Data warrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham, T.E., 3rd; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr.; Onufrie, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.; Schlegel, H.B.; Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; et al. Gaussian 09, Revision A.02; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A.; Wang, J. Development and testing of a general amber force field. J. Comp. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chem. Rev. 2019, 119, 9478–9508. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.R.; McGee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef]
Target | PDB | PLP | ASP | ChemScore | GoldScore | Overall Ranking |
---|---|---|---|---|---|---|
Acetylcholinesterase | 1QON | 79.20 | 52.57 | 38.45 | 63.13 | 2 |
4EY6 | 76.48 | 46.52 | 37.82 | 44.88 | ||
1DX4 | 74.00 | 46.63 | 39.16 | 60.42 | ||
Alpha-esterase-7 (αE7) | 5TYJ | 66.80 | 38.34 | 34.30 | 57.03 | 6 |
5TYP | 64.80 | 39.40 | 34.36 | 55.56 | ||
Beta-N-acetyl-D-hexosaminidase of Hex1 | 3NSN | 73.92 | 49.50 | 32.12 | 65.90 | 3 |
3OZP | 68.18 | 45.24 | 31.82 | 63.98 | ||
Chitinase | 3WL1 | 74.27 | 44.47 | 33.97 | 59.11 | 4 |
3WQV | 74.00 | 45.92 | 34.03 | 63.07 | ||
Ecdysone receptor | 1R20 | 71.27 | 33.41 | 34.24 | 57.75 | 5 |
1R1K | 67.57 | 33.21 | 36.12 | 59.70 | ||
N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) | 2V0K | 55.34 | 24.38 | 22.77 | 54.47 | 13 |
2VD4 | 47.33 | 26.02 | 24.36 | 47.33 | ||
Octopamine receptor | 4N7C | 60.62 | 32.69 | 33.20 | 55.29 | 10 |
Odorant-binding protein | 5V13 | 82.14 | 48.95 | 39.88 | 66.73 | 1 |
2GTE | 77.42 | 46.50 | 42.19 | 68.77 | ||
3N7H | 76.75 | 39.81 | 31.76 | 70.47 | ||
3K1E | 67.38 | 39.88 | 37.26 | 61.61 | ||
Peptide deformylase | 5CY8 | 67.11 | 30.00 | 25.58 | 64.72 | 7 |
p-hydroxyphenylpyruvate dioxygenase | 6ISD | 63.14 | 37.74 | 28.09 | 55.42 | 8 |
Polyphenol oxidase | 1BUG | 52.80 | 31.50 | 22.15 | 58.42 | 12 |
Sterol carrier protein-2 (HaSCP-2) | 4UEI | 62.77 | 32.80 | 33.39 | 52.06 | 9 |
Voltage-gated sodium channel | 6A95 | 58.26 | 23.58 | 23.60 | 59.52 | 11 |
Average RMSD of the Complex (Å) | Average RMSD of the Ligand (Å) | Average SASA (Å2) | Percentage of Potential Ligand SASA Buried (%) | Average Number of H Bonds | ΔGbind (kcal/mol) | Main Contributors | ||
---|---|---|---|---|---|---|---|---|
OBP | 3a | 2.5 ± 0.2 | 0.6 ± 0.3 | 65.1 ± 13.7 | 87 | 0.01 ± 0.07 | −35.6 ± 0.2 | Trp114 (−2.7 ± 0.5) Leu76 (−1.9 ± 0.5) Gly92 (−1.5 ± 0.5) |
3b | 2.1 ± 0.3 | 1.3 ± 0.4 | 18.5 ± 10.6 | 97 | 0.01 ± 0.1 | −32.1 ± 0.2 | Trp114 (−1.3 ± 0.4) Phe15 (−1.2 ± 0.3) Leu80 (−1.2 ± 0.3) | |
3c | 2.4 ± 0.3 | 1.5 ± 0.4 | 30.1 ± 17.0 | 94 | 0.1 ± 0.2 | −30.1 ± 0.2 | Met19 (−1.5 ± 0.5) Phe59 (−1.3 ± 0.5) Tyr122 (−1.3 ± 0.4) | |
AChE | 3a | 3.2 ± 0.4 | 0.5 ± 0.2 | 31.7 ± 12.2 | 94 | 0.4 ± 0.5 | −33.5 ± 0.1 | Trp83 (−2.4 ± 0.5) Tyr71 (−1.4 ± 0.4) Tyr374 (−1.2 ± 0.4) |
3b | 4.0 ± 0.7 | 0.9 ± 0.2 | 74.2 ± 37.4 | 85 | 0.1 ± 0.2 | −25.5 ± 0.2 | Tyr71 (−1.5 ± 0.7) Tyr374 (−1.0 ± 0.4) | |
3c | 3.1 ± 0.3 | 0.9 ± 0.2 | 47.6 ± 22.1 | 91 | 0.4 ± 0.6 | −29.1 ± 0.2 | Trp83 (−1.9 ± 0.8) Tyr71 (−1.5 ± 0.5) Tyr374 (−1.4 ± 0.9) |
Target | Organism | PDB Target | Resolution (Å) | Ref. |
---|---|---|---|---|
Acetylcholinesterase | Aedes aegypti | 1QON | 2.72 | [12] |
4EY6 | 2.40 | |||
Drosophila melanogaster | 1DX4 | 2.70 | [13] | |
Alpha-esterase-7 (αE7) | Lucilia cuprina | 5TYJ | 1.75 | [14] |
5TYP | 1.88 | |||
beta-N-acetyl-D-hexosaminidase OfHex1 | Ostrinia furnacalis | 3NSN | 2.10 | [15] |
3OZP | 2.00 | [16] | ||
Chitinase | Ostrinia furnacalis | 3WL1 | 1.77 | [17] |
3WQV | 2.04 | |||
Ecdysone receptor | Heliothis virescens | 1R20 | 3 | [18] |
1R1K | 2.9 | [19] | ||
N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) | Xanthomonas oryzae | 2V0K | 2.3 | [20] |
2VD4 | 1.9 | |||
Octopamine receptor | Blattella germanica | 4N7C | 1.75 | [21] |
Odorant-binding protein | Aedes aegypti | 5V13 | 1.84 | [12] |
Drosophila melanogaster | 2GTE | 1.4 | [22] | |
Anopheles gambiae | 3N7H | 1.6 | [23] | |
Aedes aegypti | 3K1E | 1.85 | ||
Peptide deformylase | Xanthomonas oryzae | 5CY8 | 2.38 | [24] |
p-hydroxyphenylpyruvate dioxygenase | Arabidopsis thaliana | 6ISD | 2.4 | [25] |
Polyphenol oxidase | Manduca sexta | 3HSS | 2.7 | [26] |
Sterol carrier protein-2 (HaSCP-2) | Helicoverpa armigera | 4UEI | Solution NMR | [27] |
Voltage-gated sodium channel | Periplaneta americana | 6A95 | 2.6 | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, J.R.A.; Vieira, T.F.; Pereira, R.B.; Pereira, D.M.; Castanheira, E.M.S.; Fortes, A.G.; Sousa, S.F.; Fernandes, M.J.G.; Gonçalves, M.S.T. Synthesis, Insecticidal Activity and Computational Studies of Eugenol-Based Insecticides. Chem. Proc. 2022, 12, 46. https://doi.org/10.3390/ecsoc-26-13649
Coelho JRA, Vieira TF, Pereira RB, Pereira DM, Castanheira EMS, Fortes AG, Sousa SF, Fernandes MJG, Gonçalves MST. Synthesis, Insecticidal Activity and Computational Studies of Eugenol-Based Insecticides. Chemistry Proceedings. 2022; 12(1):46. https://doi.org/10.3390/ecsoc-26-13649
Chicago/Turabian StyleCoelho, José Ricardo A., Tatiana F. Vieira, Renato B. Pereira, David M. Pereira, Elisabete M. S. Castanheira, António Gil Fortes, Sérgio F. Sousa, Maria José G. Fernandes, and Maria Sameiro T. Gonçalves. 2022. "Synthesis, Insecticidal Activity and Computational Studies of Eugenol-Based Insecticides" Chemistry Proceedings 12, no. 1: 46. https://doi.org/10.3390/ecsoc-26-13649
APA StyleCoelho, J. R. A., Vieira, T. F., Pereira, R. B., Pereira, D. M., Castanheira, E. M. S., Fortes, A. G., Sousa, S. F., Fernandes, M. J. G., & Gonçalves, M. S. T. (2022). Synthesis, Insecticidal Activity and Computational Studies of Eugenol-Based Insecticides. Chemistry Proceedings, 12(1), 46. https://doi.org/10.3390/ecsoc-26-13649