Evaluation of Forage Yield and Quality of Cowpea, Guar, and Mung Bean under Drought Stress Conditions †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Treatments
2.3. Statistical Analysis
3. Results and Discussion
3.1. Forage Yield and Agronomical Traits
3.2. Forage Quality Traits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stoilova, T.; Pereira, G. Assessment of the genetic diversity in a germplasm collection of cowpea (Vigna unguiculata (L.) Walp.) using morphological traits. Afr. J. Agric. Res. 2013, 8, 208–215. [Google Scholar] [CrossRef]
- Khatik, K.L.; Vaishnava, C.S.; Gupta, A.N.D.L. Nutritional evaluation of green gram (Vigna radiata L.) straw in sheep and goats. Indian J. Small Rumin. 2007, 13, 196–198. [Google Scholar]
- Singh, B.B.; Ajeigbe, H.A.; Tarawali, S.A.; Fernandez-Rivera, S.; Musa, A. Improving the production and utilization of cowpea as food and fodder. Field Crops Res. 2003, 84, 169–177. [Google Scholar] [CrossRef]
- Ahmad, U.H.A.; Ahmad, R.; Mahmood, N.; Tanveer, A. Performance of forage sorghum intercropped with forage legumes under different planting patterns. Pak. J. Bot. 2007, 39, 431–439. [Google Scholar]
- Ashour, N.I.; Behairy, G.T.; Abd EL-Lateef, E.M.; Selim, M.M. A preliminary study on the potentiality of intercropping of mung bean (Vigna radiata Roxb.) with dwarf grain sorghum (Sorghum bicolor Moench) in Egypt. Bull. Natl. Res. Cent. 1991, 16, 53. [Google Scholar]
- Dorrenbos, J.; Kassam, A.H. Yeild response to water. In FAO Irrigation and Drainage Paper; No. 33; FAO: Rome, Italy, 1979. [Google Scholar]
- Lambrides, C.J.; Godwin, I.D. Mung bean. In Genome Mapping and Molecular Breeding in Plants; Chittarajan, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 3, pp. 69–90. [Google Scholar]
- Lee, J.T.; Bailey, C.A.; Cartwright, A.L. Guar meal germ and hull fractions differently affect growth performance and intestinal viscosity of broiler chickens. Poult. Sci. 2003, 82, 1589–1595. [Google Scholar] [CrossRef] [PubMed]
- Shahram, A.; Daneshi, N. Appropriate level of irrigation water needed in agriculture, White beans. In Proceedings of the Ninth Congress of Soil Science, Tehran, Iran, 28–31 August 2005. (In Persian). [Google Scholar]
- Rao, S.C.; Northup, B.K. Capabilities of four novel warm-season legumes in the southern Great Plains: Biomass and forage quality. Crop Sci. 2009, 49, 1096–1102. [Google Scholar] [CrossRef] [Green Version]
- Rao, S.C.; Northup, B.K. Water Use by Five Warm-Season Legumes in the Southern Great Plains. Crop Sci. 2009, 49, 2317–2324. [Google Scholar] [CrossRef] [Green Version]
- Kirkham, M. Field capacity, wilting point, available water, and the non-limiting water range. In Principles of Soil and Plant Water Relations; Academic Press: Burlington, NJ, USA, 2005; pp. 101–115. [Google Scholar] [CrossRef]
- Cook, S.; Gichuki, F.; Turral, H. Water productivity: Estimation at plot, farm and basin scale. In People and Agro-Ecosystems Research for Development Challenge; CIAT: Cali, Colombia, 2006; p. 144. [Google Scholar]
- Muir, J.P. Hand-plucked forage yield and quality and seed production from annual and short-lived perennial warm season legumes fertilized with composted manure. Crop Sci. 2002, 42, 897–904. [Google Scholar] [CrossRef]
- Souza, P.J.; Ramos, T.F.; Fiel, L.D.; Farias VD, D.S.; Sousa DD, P.; Nunes, H.G. Yield and water use efficiency of cowpea under water deficit. Rev. Bras. Eng. Agríc. Ambient. 2019, 23, 119–125. [Google Scholar] [CrossRef]
- Kanda, E.K.; Senzanje, A.; Mabhaudhi, T.; Mubanga, C.S. Nutritional yield and nutritional water productivity of cowpea (Vigna unguiculata L. Walp) under varying irrigation water regimes. Water SA 2020, 46, 410–418. [Google Scholar] [CrossRef]
Irrigation Treatments | Number of Irrigation Times | Cumulative Amount of Irrigation (m3 ha−1) | ||
---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | |
Normal condition (30% moisture depletion) | 9 | 9 | 9230 | 9000 |
Medium stress (50% moisture depletion) | 6 | 6 | 6150 | 6050 |
Severe stress (70% moisture depletion) | 5 | 5 | 5120 | 5000 |
Treatment | Plant Height (cm) | Fresh Yield (T ha−1) | Dry Yield (T ha−1) | Water Productivity (kg m−3) | ||||
---|---|---|---|---|---|---|---|---|
Year | ||||||||
2019 | 61.18 | a | 20.00 | a | 4.45 | a | 3.04 | a |
2020 | 52.07 | b | 14.69 | b | 3.40 | b | 2.29 | b |
LSD (p < 0.05) | 3.21 | 2.59 | 0.8 | 0.44 | ||||
Drought stress level | ||||||||
Water-deficit (30%) | 60.39 | a | 19.28 | a | 4.58 | a | 2.11 | c |
Water-deficit (50%) | 57.17 | a | 17.30 | b | 3.77 | b | 2.83 | b |
Water-deficit (70%) | 52.33 | b | 15.46 | c | 3.42 | b | 3.05 | a |
LSD (p < 0.05) | 3.57 | 1.05 | 0.38 | 0.21 | ||||
Legumes | ||||||||
Cowpea (C) | 58.28 | a | 22.29 | a | 5.03 | a | 3.40 | a |
Mung bean (M) | 59.50 | a | 20.39 | b | 4.71 | a | 3.15 | a |
Guar (G) | 52.10 | b | 9.37 | c | 2.03 | b | 1.44 | b |
LSD (p < 0.05) | 3.00 | 1.69 | 0.49 | 0.28 | ||||
Interactions Water Deficit × Legume | ||||||||
water-deficit 30% × (C) | 62.50 | a | 25.86 | a | 6.46 | a | 2.83 | c |
water-deficit 30% × (M) | 62.50 | a | 21.85 | b | 5.09 | b | 2.40 | c |
water-deficit 30% × (G) | 56.17 | b | 10.15 | d | 2.20 | d | 1.11 | d |
water-deficit 50% × (C) | 57.67 | ab | 21.36 | b | 4.58 | bc | 3.50 | ab |
water-deficit 50% × (M) | 60.00 | ab | 20.64 | b | 4.70 | b | 3.38 | b |
water-deficit 50% × (G) | 53.83 | b | 9.89 | d | 2.00 | d | 1.62 | d |
water-deficit 70% × (C) | 54.67 | b | 19.65 | bc | 4.04 | c | 3.88 | a |
water-deficit 70% × (M) | 56.00 | b | 18.67 | c | 4.32 | bc | 3.68 | ab |
water-deficit 70% × (G) | 46.33 | c | 8.07 | d | 1.92 | d | 1.59 | d |
LSD (p < 0.05) | 5.19 | 2.92 | 0.86 | 0.48 | ||||
Interactions Year × Legume | ||||||||
2019 × (C) | 62.00 | a | 26.86 | a | 5.3 | a | 4.03 | a |
2019 × (M) | 62.44 | a | 22.90 | b | 5.68 | a | 3.52 | b |
2019 × (G) | 59.11 | ab | 10.24 | d | 2.35 | c | 1.57 | d |
2020 × (C) | 54.55 | c | 17.72 | c | 4.7 | a | 2.77 | c |
2020 × (M) | 56.55 | bc | 17.78 | c | 3.74 | b | 2.79 | c |
2020 × (G) | 45.11 | d | 8.50 | d | 1.72 | c | 1.31 | d |
LSD (p < 0.05) | 4.24 | 2.38 | 0.7 | 0.39 |
Treatment | Dry Matter | Crude Protein | NDF | Ash | ME (Mcal/kg) | Organic Matter Digestibility | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Drought stress level | ||||||||||||
water-deficit (30%) | 95.35 | a | 15.48 | a | 29.83 | a | 9.79 | a | 2.18 | a | 60.56 | a |
water-deficit (50%) | 95.35 | a | 15.55 | a | 28.46 | a | 8.72 | a | 2.21 | a | 61.39 | a |
water-deficit (70%) | 95.15 | a | 14.15 | a | 30.02 | a | 9.52 | a | 2.18 | a | 60.50 | a |
LSD | 0.24 | 1.63 | 2.11 | 1.87 | 0.07 | 2.03 | ||||||
Legumes | ||||||||||||
Cowpea (C) | 95.29 | a | 15.39 | a | 29.56 | a | 9.01 | a | 2.17 | a | 60.20 | a |
Mung bean (M) | 95.26 | a | 14.56 | a | 29.63 | a | 9.51 | a | 2.18 | a | 60.54 | a |
Guar (G) | 95.29 | a | 14.23 | a | 29.12 | a | 9.51 | a | 2.22 | a | 61.69 | a |
LSD | 0.21 | 1.53 | 2.48 | 0.96 | 0.17 | 4.66 | ||||||
Interactions Water Deficit × Legume | ||||||||||||
water-deficit 30% × (C) | 95.44 | a | 15.68 | abc | 30.17 | a | 10.17 | a | 2.13 | a | 59.01 | a |
water-deficit 30% × (M) | 95.37 | ab | 16.97 | a | 29.28 | a | 9.50 | a | 2.16 | a | 59.76 | a |
water-deficit 30% × (G) | 95.23 | ab | 13.80 | cd | 30.05 | a | 9.70 | a | 2.27 | a | 62.90 | a |
water-deficit 50% × (C) | 95.26 | ab | 13.98 | bcd | 28.63 | a | 7.05 | b | 2.29 | a | 63.49 | a |
water-deficit 50% × (M) | 95.37 | ab | 14.45 | abcd | 28.70 | a | 10.08 | a | 2.09 | a | 58.16 | a |
water-deficit 50% × (G) | 95.41 | a | 15.22 | abc | 28.03 | a | 9.03 | a | 2.26 | a | 62.51 | a |
water-deficit 70% × (C) | 95.17 | ab | 16.51 | ab | 29.87 | a | 9.82 | a | 2.10 | a | 58.12 | a |
water-deficit 70% × (M) | 95.04 | b | 12.27 | d | 30.90 | a | 8.95 | a | 2.30 | a | 63.71 | a |
water-deficit 70% × (G) | 95.23 | ab | 13.69 | cd | 29.28 | a | 9.80 | a | 2.15 | a | 59.68 | a |
LSD | 0.36 | 2.66 | 4.29 | 1.69 | 0.31 | 8.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghotbi, V.; Mahrokh, A.; Tehrani, A.M.; Asadi, H. Evaluation of Forage Yield and Quality of Cowpea, Guar, and Mung Bean under Drought Stress Conditions. Chem. Proc. 2022, 10, 62. https://doi.org/10.3390/IOCAG2022-12288
Ghotbi V, Mahrokh A, Tehrani AM, Asadi H. Evaluation of Forage Yield and Quality of Cowpea, Guar, and Mung Bean under Drought Stress Conditions. Chemistry Proceedings. 2022; 10(1):62. https://doi.org/10.3390/IOCAG2022-12288
Chicago/Turabian StyleGhotbi, Vida, Ali Mahrokh, Ali Mostafa Tehrani, and Hormoz Asadi. 2022. "Evaluation of Forage Yield and Quality of Cowpea, Guar, and Mung Bean under Drought Stress Conditions" Chemistry Proceedings 10, no. 1: 62. https://doi.org/10.3390/IOCAG2022-12288
APA StyleGhotbi, V., Mahrokh, A., Tehrani, A. M., & Asadi, H. (2022). Evaluation of Forage Yield and Quality of Cowpea, Guar, and Mung Bean under Drought Stress Conditions. Chemistry Proceedings, 10(1), 62. https://doi.org/10.3390/IOCAG2022-12288