Evaluation of Potential Ecological Risk Index of Toxic Metals Contamination in the Soils †
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Soil Sampling and Chemical Analyses
3.2. Assessment of Soil Contamination Risk
3.2.1. Contamination Factor (Cf)
3.2.2. Ecological Risk Factor (Er)
3.2.3. Potential Ecological Risk Index (RI)
4. Results
4.1. Descriptive Analysis of Toxic Metal Concentrations
4.2. Assessment of Contamination and Environmental Risk
4.3. Spatial Distribution of Potential Ecological Risk Level
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohammadi, F.; Samaei, M.R.; Azhdarpoor, A.; Teiri, H.; Badeenezhad, A.; Rostami, S. Modelling and optimizing pyrene removal from the soil by phytoremediation using response surface methodology, artificial neural networks, and genetic algorithm. Chemosphere 2019, 237, 124486. [Google Scholar] [CrossRef]
- Rostami, S.; Kamani, H.; Shahsavani, S.; Hoseini, M. Environmental monitoring and ecological risk assessment of heavy metals in farmland soils. Hum. Ecol. Risk Assess. Int. J. 2021, 27, 392–404. [Google Scholar] [CrossRef]
- Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512, 143–153. [Google Scholar] [CrossRef]
- Lee, P.K.; Yu, S.; Jeong, Y.J.; Seo, J.; Choi, S.G.; Yoon, B.Y. Source identification of arsenic contamination in agricultural soils surrounding a closed Cu smelter, South Korea. Chemosphere 2019, 217, 183–194. [Google Scholar] [CrossRef]
- Liu, P.; Hu, W.; Tian, K.; Huang, B.; Zhao, Y.; Wang, X.; Khim, J.S. Accumulation and ecological risk of heavy metals in soils along the coastal areas of the Bohai Sea and the Yellow Sea: A comparative study of China and South Korea. Environ. Int. 2020, 137, 105519. [Google Scholar] [CrossRef]
- Rinklebe, J.; Antoniadis, V.; Shaheen, S.M.; Rosche, O.; Altermann, M. Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environ. Int. 2019, 126, 76–88. [Google Scholar] [CrossRef]
- Rafiee, A.; Delgado-Saborit, J.M.; Sly, P.D.; Quémerais, B.; Hashemi, F.; Akbari, S.; Hoseini, M. Environmental chronic exposure to metals and effects on attention and executive function in the general population. Sci. Total Environ. 2020, 705, 135911. [Google Scholar] [CrossRef]
- Sharma, R.K.; Agrawal, M. Biological effects of heavy metals: An overview. J. Environ. Biol. 2005, 26, 301–313. [Google Scholar]
- Qi, H.; Zhao, B.; Li, L.; Chen, X.; An, J.; Liu, X. Heavy metal contamination and ecological risk assessment of the agricultural soil in Shanxi Province, China. R. Soc. Open Sci. 2020, 7, 200538. [Google Scholar] [CrossRef]
- Wei, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Gupta, S.K.; Ansari, F.A.; Nasr, M.; Chabukdhara, M.; Bux, F. Multivariate analysis and health risk assessment of heavy metal contents in foodstuffs of Durban, South Africa. Environ. Monit. Assess. 2018, 190, 1–15. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. USEPA R-bCT and Manual EPSG; United States Environmental Protection Agency: Washington, DC, USA, 2000.
- Tisha, S.M.; Chowdhury, T.R.; Hossain, M.D. Heavy Metal Contamination and Ecological Risk Assessment in the Soil of Tannery Industry at Savar. Chem. Eng. Res. Bull. 2020, 106–113. [Google Scholar] [CrossRef]
- Martínez-Villegas, N.; Hernández, A.; Meza-Figueroa, D.; Sen Gupta, B. Distribution of arsenic and risk assessment of activities on soccer pitches irrigated with arsenic-contaminated water. Int. J. Environ. Res. Public Health 2018, 15, 1060. [Google Scholar] [CrossRef] [Green Version]
- Castro-Larragoitia, J.; Kramar, U.; Puchelt, H. 200 years of mining activities at La Paz/San Luis Potosí/Mexico—Consequences for environment and geochemical exploration. J. Geochem. Explor. 1997, 58, 81–91. [Google Scholar] [CrossRef]
- Razo, I.; Carrizales, L.; Castro, J.; Díaz-Barriga, F.; Monroy, M. Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water Air Soil Pollut. 2004, 152, 129–152. [Google Scholar] [CrossRef]
- Martínez-Villegas, N.; Briones-Gallardo, R.; Ramos-Leal, J.A.; Avalos-Borja, M.; Castañón-Sandoval, A.D.; Razo-Flores, E.; Villalobos, M. Arsenic mobility controlled by solid calcium arsenates: A case study in Mexico showcasing a potentially widespread environmental problem. Environ. Pollut. 2013, 176, 114–122. [Google Scholar] [CrossRef]
- Manz, M.; Castro, L.J. The environmental hazard caused by smelter slags from the Sta. Maria de la Paz mining district in Mexico. Environ. Pollut. 1997, 98, 7–13. [Google Scholar] [CrossRef]
- Chapa-Vargas, L.; Mejia-Saavedra, J.J.; Monzalvo-Santos, K.; Puebla-Olivares, F. Blood lead concentrations in wild birds from a polluted mining region at Villa de La Paz, San Luis Potosi, Mexico. J. Environ. Sci. Health Part A 2010, 45, 90–98. [Google Scholar] [CrossRef]
- INEGI. Prontuario de Información Geográfica Municipal de los Estados Unidos Mexicanos; Instituto Nacional de EstadísticaGeografía e Informática: San Luis Potosí, Mexico, 2009. [Google Scholar]
- Ruíz-Huerta, E.A.; De la Garza Varela, A.; Gómez-Bernal, J.M.; Castillo, F.; Avalos-Borja, M.; SenGupta, B.; Martínez-Villegas, N. Arsenic contamination in irrigation water, agricultural soil and maize crop from an abandoned smelter site in Matehuala, Mexico. J. Hazard. Mater. 2017, 339, 330–339. [Google Scholar] [CrossRef]
- Vercoutere, K.; Fortunati, U.; Muntau, H.; Griepink, B.; Maier, E.A. The certified reference materials CRM 142 R light sandy soil, CRM 143 R sewage sludge amended soil and CRM 145 R sewage sludge for quality control in monitoring environmental and soil pollution. Fresenius’ J. Anal. Chem. 1995, 352, 197–202. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Method 200.7: Revision 4.4, Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry; United States Environmental Protection Agency: Cincinnati, OH, USA, 1994.
- Guo, W.; Liu, X.; Liu, Z.; Li, G. Pollution and potential ecological risk evaluation of heavy metals in the sediments around Dongjiang Harbor, Tianjin. Procedia Environ. Sci. 2010, 2, 729–736. [Google Scholar] [CrossRef] [Green Version]
- Hakanson, L. An ecological risk index for aquatic pollution control. A Sedimentol. Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Wang, X.; Deng, C.; Yin, J.; Tang, X. Toxic heavy metal contamination assessment and speciation in sugarcane soil. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 108, p. 042059. [Google Scholar] [CrossRef]
- Mahabadi, H.M.; Ramroudi, M.; Asgharipour, M.R.; Rahmani, H.R.; Afyuni, M. Evaluation of the ecological risk index (Er) of heavy metals (HMs) pollution in urban field soils. SN Appl. Sci. 2020, 2, 1–8. [Google Scholar] [CrossRef]
- Kang, Z.; Wang, S.; Qin, J.; Wu, R.; Li, H. Pollution characteristics and ecological risk assessment of heavy metals in paddy fields of Fujian province, China. Sci. Rep. 2020, 10, 12244. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, X.; Bai, J.; Shih, K.; Zeng, E.Y.; Cheng, H. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environ. Sci. Pollut. Res. 2013, 20, 6150–6159. [Google Scholar] [CrossRef]
- Ogundele, D.T.; Adio, A.A.; Oludele, O.E. Heavy metal concentrations in plants and soil along heavy traffic roads in North Central Nigeria. J. Environ. Anal. Toxicol. 2015, 5, 1. [Google Scholar] [CrossRef]
- Yi, Y.; Yang, Z.; Zhang, S. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ. Pollut. 2011, 159, 2575–2585. [Google Scholar] [CrossRef]
Index | Category | Description | References |
---|---|---|---|
Contamination factor (Cf) | Cf < 1 | Low contamination | [25,26] |
1 ≤ Cf < 2 | Low to moderate contamination | ||
2 ≤ Cf < 3 | Moderate contamination | ||
3 ≤ Cf < 4 | Moderate to high contamination | ||
4 ≤ Cf < 5 | High contamination | ||
5 ≤ Cf < 6 | High to very high contamination | ||
Cf ≥ 6 | Extreme contamination | ||
Ecological risk factor (Er) | Er < 40 | Low risk | [2,27] |
40 ≤ Er < 80 | Moderate risk | ||
80 ≤ Er < 160 | Considerable risk | ||
160 ≤ Er < 320 | High risk | ||
Er ≥ 320 | Very high risk | ||
Potential Ecological Risk Index (RI) | RI < 150 | Low risk | [28,29] |
150 ≤ RI < 300 | Moderate risk | ||
300 ≤ RI < 600 | Considerable risk | ||
RI ≥ 600 | High risk |
Metals | As | Cu | Ni | Pb | Zn |
---|---|---|---|---|---|
Toxic-response factor | 10 | 5 | 5 | 5 | 1 |
Arsenic (As) | Copper (Cu) | Nickel (Ni) | Lead (Pb) | Zinc (Zn) | |
---|---|---|---|---|---|
Mean (Measured) | 119.44 | 20.65 | 3.20 | 36.95 | 58.93 |
Standard Error | 17.54 | 1.56 | 0.30 | 3.97 | 5.56 |
Median | 90.51 | 18.10 | 3.07 | 30.86 | 54.57 |
Standard Deviation | 109.54 | 9.75 | 1.87 | 24.79 | 34.71 |
Kurtosis | 8.37 | 3.63 | 0.93 | 5.73 | 15.38 |
Skewness | 2.43 | 1.68 | 0.93 | 2.12 | 3.27 |
Range | 578.17 | 47.85 | 8.13 | 126.30 | 209.81 |
Minimum | 13.14 | 7.88 | 0.24 | 8.99 | 20.53 |
Maximum | 591.31 | 55.73 | 8.37 | 135.29 | 230.34 |
Sum | 4658.01 | 805.17 | 124.90 | 1440.99 | 2298.24 |
Coefficient of variation (CV) (%) | 91.71 | 47.22 | 58.32 | 67.10 | 58.90 |
Samples | 39 | 39 | 39 | 39 | 39 |
Confidence Level (95.0%) | 35.51 | 3.16 | 0.61 | 8.04 | 11.25 |
Permissible Limits (mg/kg) | 10 | 36 | 35 | 85 | 50 |
Elements | Principal Components | Communalities | |
---|---|---|---|
PC1 | PC2 | ||
As | 0.119 | −0.838 | 0.717 |
Cu | 0.981 | 0.067 | 0.966 |
Ni | 0.235 | 0.816 | 0.722 |
Pb | 0.819 | 0.342 | 0.788 |
Zn | 0.905 | −0.164 | 0.846 |
Eigenvalue | 2.522 | 1.517 | |
% of variance | 50.431 | 30.347 | |
Cumulative % | 50.431 | 80.778 |
Metals | As | Cu | Ni | Pb | Zn |
---|---|---|---|---|---|
As | 1 | ||||
Cu | 0.029 | 1 | |||
Ni | −0.408 ** | 0.264 | 1 | ||
Pb | −0.137 | 0.795 ** | 0.410 ** | 1 | |
Zn | 0.130 | 0.878 ** | 0.054 | 0.537 ** | 1 |
Heavy Metals | As | Cu | Ni | Pb | Zn | RI | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Contamination Indices | Cf | Er | Cf | Er | Cf | Er | Cf | Er | Cf | Er | |
Mean (x−) | 11.94 | 119.44 | 0.57 | 2.87 | 0.09 | 0.46 | 0.43 | 2.17 | 1.18 | 1.18 | 126.11 |
Median (med) | 9.05 | 90.51 | 0.50 | 2.51 | 0.09 | 0.44 | 0.36 | 1.82 | 1.09 | 1.09 | 100.34 |
Minimum (min) | 1.31 | 13.14 | 0.22 | 1.09 | 0.01 | 0.03 | 0.11 | 0.53 | 0.41 | 0.41 | 17.32 |
Maximum (max) | 59.13 | 591.31 | 1.55 | 7.74 | 0.24 | 1.20 | 1.59 | 7.96 | 4.61 | 4.61 | 601.34 |
Standard deviation (SD) | 10.95 | 109.54 | 0.27 | 1.35 | 0.05 | 0.27 | 0.29 | 1.46 | 0.69 | 0.69 | 109.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, A.; Gupta, B.S.; Patidar, S.; Martínez-Villegas, N. Evaluation of Potential Ecological Risk Index of Toxic Metals Contamination in the Soils. Chem. Proc. 2022, 10, 59. https://doi.org/10.3390/IOCAG2022-12214
Saha A, Gupta BS, Patidar S, Martínez-Villegas N. Evaluation of Potential Ecological Risk Index of Toxic Metals Contamination in the Soils. Chemistry Proceedings. 2022; 10(1):59. https://doi.org/10.3390/IOCAG2022-12214
Chicago/Turabian StyleSaha, Arnab, Bhaskar Sen Gupta, Sandhya Patidar, and Nadia Martínez-Villegas. 2022. "Evaluation of Potential Ecological Risk Index of Toxic Metals Contamination in the Soils" Chemistry Proceedings 10, no. 1: 59. https://doi.org/10.3390/IOCAG2022-12214
APA StyleSaha, A., Gupta, B. S., Patidar, S., & Martínez-Villegas, N. (2022). Evaluation of Potential Ecological Risk Index of Toxic Metals Contamination in the Soils. Chemistry Proceedings, 10(1), 59. https://doi.org/10.3390/IOCAG2022-12214