A Bibliometric Overview over Smart Farming †
Abstract
:1. Introduction
2. Methodology
3. Results
- Increase in production: the optimization of all processes related to agriculture and livestock;
- Water saving: weather forecasts and sensors that measure soil moisture allow watering only when necessary and for the right amount of time;
- Quality improvement: an analysis of the production quality obtained in relation to the strategies used makes it possible to adapt the latter to increase the quality of the next production;
- Cost reduction: the automation of sowing, treatment, and harvesting processes in the case of agriculture reduces resource consumption;
- Pest detection and health care: the early detection of pests in crops or diseases in animals makes it possible to minimize this impact on production and improve animal welfare;
- Increases sustainability: saving resources such as irrigation water and maximizing land use reduces environmental impact.
- Note: the sensors will read and record the data in a bank for analysis;
- Diagnosis: artificial intelligence will analyze the data based on predefined business models and rules for identification and decision making;
- Decision: artificial intelligence will make the decision guided by machine learning;
- Execution: artificial intelligence will direct some technological device to perform the task.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pierce, F.J.; Nowak, P. Aspects of Precision Agriculture. In Advances in Agronomy; Elsevier; Academic Press: San Diego, CA, USA, 1999; Volume 67, pp. 1–85. [Google Scholar] [CrossRef]
- Tang, S.; Zhu, Q.; Zhou, X.; Liu, S.; Wu, M. A conception of digital agriculture. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 5, pp. 3026–3028. [Google Scholar] [CrossRef]
- Massruhá, S.M.F.S.; Leite, M.A.D.A.; Oliveira, S.R.D.M.; Meira, C.A.A.; Luchiari Junior, A.; Bolfe, E.L. Agricultura Digital: Pesquisa, Desenvolvimento e Inovação nas Cadeias Produtivas; Embrapa: Brasília, Brazil, 2020. [Google Scholar]
- Rose, D.C.; Chilvers, J. Agriculture 4.0: Broadening responsible innovation in an era of Smart Farming. Front. Sustain. Food Systs. 2018, 2, 87. [Google Scholar] [CrossRef] [Green Version]
- Bronson, K. Smart farming: Including rights holders for responsible agricultural innovation. Technol. Innov. 2018, 8, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Overton, M. Agricultural Revolution in England: The Transformation of the Agrarian Economy, 1500–1850; Number 23 in Cambridge Studies in Historical Geography; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1996. [Google Scholar]
- Patrício, D.I.; Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 2018, 153, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Wei, B. (Eds.) Robotics and Mechatronics for Agriculture; CRC Press; Taylor & Francis Group: Boca Raton, FL, USA, 2017. [Google Scholar]
- Ramin Shamshiri, R.; Weltzien, C.; Hameed, I.A.; Yule, I.J.; Grift, T.E.; Balasundram, S.K.; Pitonakova, L.; Ahmad, D.; Chowdhary, G. Research and development in agricultural robotics: A perspective of digital farming. Int. J. Agric. Biol. 2018, 11, 1–11. [Google Scholar] [CrossRef]
- Shi, X.; An, X.; Zhao, Q.; Liu, H.; Xia, L.; Sun, X.; Guo, Y. State-of-the-Art Internet of Things in Protected Agriculture. Sensors 2019, 19, 1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lottes, P.; Khanna, R.; Pfeifer, J.; Siegwart, R.; Stachniss, C. UAV-based crop and weed classification for smart farming. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; IEEE: Singapore, 2017; pp. 3024–3031. [Google Scholar] [CrossRef]
- Mousazadeh, H. A technical review on navigation systems of agricultural autonomous off-road vehicles. J. Terramech. 2013, 50, 211–232. [Google Scholar] [CrossRef]
- Lima, G.C.; Figueiredo, F.L.; Barbieri, A.E.; Seki, J. Agro 4.0: Enabling agriculture digital transformation through IoT. Rev. Ciência Agronômica 2020, 51, 1–20. [Google Scholar] [CrossRef]
- Romani, L.A.S.; Bariani, J.M.; Drucker, D.P.; Vaz, G.J.; Mondo, V.H.V.; Moura, M.F.; Bolfe, E.L.; Sousa, P.H.P.D.; Oliveira, S.R.D.M.; Luchiari Junior, A. Role of research and development institutions and AgTechs in the digital transformation of Agriculture in Brazil. Rev. Ciência Agronômica 2020, 51, 1–8. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. Wagening. J. Life Sci. 2019, 90, 100315. [Google Scholar] [CrossRef]
- Okubo, Y. Bibliometric Indicators and Analysis of Research Systems: Methods and Examples. In OECD Science, Technology and Industry Working Papers 1997/01; Organisation for Economic Co-Operation and Development: Paris, France, 1997; Volume 1. [Google Scholar] [CrossRef]
- Zupic, I.; Čater, T. Bibliometric Methods in Management and Organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. VOSviewer Manual 1.6.17; Universiteit Leiden: Leiden, The Netherlands, 2021; Available online: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.17.pdf (accessed on 12 January 2022).
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Pongnumkul, S.; Chaovalit, P.; Surasvadi, N. Applications of Smartphone-Based Sensors in Agriculture: A Systematic Review of Research. J. Sensors 2015, 2015, 195308. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.S.; Riaz, S.; Abid, A.; Abid, K.; Naeem, M.A. A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. IEEE Access 2019, 7, 156237–156271. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Souza, J.S.; dos Reis, J.G.M.; da Cruz Correia, P.F.; Rodrigues, G.S. A Bibliometric Overview over Smart Farming. Chem. Proc. 2022, 10, 28. https://doi.org/10.3390/IOCAG2022-12327
de Souza JS, dos Reis JGM, da Cruz Correia PF, Rodrigues GS. A Bibliometric Overview over Smart Farming. Chemistry Proceedings. 2022; 10(1):28. https://doi.org/10.3390/IOCAG2022-12327
Chicago/Turabian Stylede Souza, Jonatas Santos, João Gilberto Mendes dos Reis, Paula Ferreira da Cruz Correia, and Gabriel Santos Rodrigues. 2022. "A Bibliometric Overview over Smart Farming" Chemistry Proceedings 10, no. 1: 28. https://doi.org/10.3390/IOCAG2022-12327
APA Stylede Souza, J. S., dos Reis, J. G. M., da Cruz Correia, P. F., & Rodrigues, G. S. (2022). A Bibliometric Overview over Smart Farming. Chemistry Proceedings, 10(1), 28. https://doi.org/10.3390/IOCAG2022-12327