Micronutrient Content and Geometrical Features of Grain Sorghum Subjected to Water Stress †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Mineral Content in Sorghum Grains
2.3. Image Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dicko, M.H.; Gruppen, H.; Traore, A.S.; van Berkel, W.J.H.; Voragen, A.G.J. Review: Sorghum grain as human food in Africa: Relevance of content of starch and amylase activities. Afr. J. Biotechnol. 2006, 5, 384–395. [Google Scholar]
- Jirsa, O.; Polišenska, I. Identification of Fusarium damaged wheat kernels using image analysis. Acta Universitatis et Silviculturae Mendelianae Brunensis 2011, 59, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.S.; Ferguson, E.L.; Bailey, K.; Fahmida, U.; Harpe, T.B.; Gibson, R.S. The concentration of iron, calcium, zinc and phytate in cereals and legumes habitually consumed by infants living in East Lombok, Indonesia. J. Food Compos. Anal. 2007, 20, 609–617. [Google Scholar] [CrossRef]
- Paiva, C.L.; Queiroz, V.A.V.; Simeone, M.L.F.; Schaffert, R.E.; de Oliveira, A.C.; da Silva, C.S. Mineral content of sorghum genotypes and the influence of water stress. Food Chem. 2017, 214, 400–405. [Google Scholar] [CrossRef]
- Wang, L.; Baskin, J.M.; Baskin, C.C.; Cornelissen, J.H.C.; Dong, M.; Huang, Z.Y. Seed dimorphism, nutrients and salinity differentially affect seed traits of the desert halophyte Suaeda aralocaspica via multiple maternal effects. BMC Plant Biol. 2012, 12, 170. [Google Scholar] [CrossRef] [Green Version]
- Manga, V.K.; Yadav, O.P. Effect of seed size on development traits and ability to tolerate drought in pearl millet. J. Arid Environ. 1995, 29, 169–172. [Google Scholar] [CrossRef]
- Saini, M.; Singh, J.; Prakash, N.R. Analysis of wheat grain varieties using image processing—A review. Int. J. Sci. Res. 2014, 3, 490–495. [Google Scholar]
- Ropelewska, E.; Nazari, L. The effect of drought stress of sorghum grains on the textural features evaluated using machine learning. Eur. Food Res. Technol. 2021, 247, 2787–2798. [Google Scholar] [CrossRef]
- Badigannavar, A.; Girish, G.; Ramachandra, N.V.; Ganapathi, T.R. Genotypic variation for seed protein and mineral content among post-rainy season-grown sorghum genotypes. Crop J. 2016, 4, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Ng’uni, D.; Geleta, M.; Johansson, E.; Fatih, M.; Bryngelsson, T. Characterization of the Southern African sorghum varieties for mineral contents: Prospects for breeding for grain mineral dense lines. Afr. J. Food Sci. 2011, 5, 436–445. [Google Scholar] [CrossRef]
- Kayodé, A.P.P.; Linnemann, A.R.; Hounhouigan, J.D.; Nout, M.J.R.; van Boekel, M.A.J.S. Genetic and environmental impact on iron, zinc, and phytate in food sorghum grown in Benin. J. Agric. Food Chem. 2006, 54, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Pontieri, P.; Troisi, J.; Di Fiore, R.; Di Maro, A.; Bean, S.R.; Tuinstra, M.R.; Roemer, E.; Boffa, A.; Del Giudice, A.; Pizzolante, G.; et al. Mineral contents in grains of seven food-grade sorghum hybrids grown in a Mediterranean environment. Aust. J. Crop Sci. 2014, 8, 1550–1559. [Google Scholar]
- Menesatti, P.; Antonucci, F.; Costa, C.; Santori, A.; Niciarelli, I.; Infantino, A. Application of morphometric image analysis system to evaluate the incidence of Fusarium head blight wheat infected kernels. Proc. Bornimer Agrartech. Ber. 2009, 69, 157–161. [Google Scholar]
- Ropelewska, E. Evaluation of wheat kernels infected by fungi of the genus Fusarium based on morphological features. J. Food Saf. 2019, 39, e12623. [Google Scholar] [CrossRef]
Genotype, Irrigation | Parameter | ||||
---|---|---|---|---|---|
Ca (ppm) | Fe (ppm) | Mg (ppm) | Mn (ppm) | Zn (ppm) | |
MGS2, Ir60 | 878.94 a | 335.81 a | 1783.21 a | 22.76 a | 14.73 a |
MGS2, Ir180 | 425.55 b | 255.91 a | 1736.36 a | 22.30 a | 14.50 a |
KGS23, Ir60 | 295.83 a | 111.82 a | 1695.43 a | 14.66 a | 8.71 a |
KGS23, Ir180 | 315.95 a | 373.22 b | 1890.95 a | 17.96 a | 14.91 b |
TN-04-78, Ir60 | 522.61 a | 84.20 a | 1554.29 a | 12.12 a | 4.82 a |
TN-04-78, Ir180 | 385.63 b | 208.35 b | 1618.30 a | 23.79 b | 15.13 b |
TN-04-79, Ir60 | 591.94 a | 191.80 a | 1681.53 a | 20.04 a | 20.34 a |
TN-04-79, Ir180 | 597.65 a | 100.82 b | 1661.53 a | 14.84 b | 13.97 b |
TN-04-129, Ir60 | 578.03 a | 49.96 a | 1496.56 a | 10.47 a | 3.15 a |
TN-04-129, Ir180 | 153.44 b | 106.26 a | 1410.81 a | 13.44 a | 6.91 b |
TN-04-134, Ir60 | 558.88 a | 106.13 a | 1528.70 a | 12.08 a | 1.65 a |
TN-04-134, Ir180 | 447.33 b | 159.16 a | 1579.99 a | 14.95 b | 5.02 b |
TN-04-142, Ir60 | 287.00 a | 166.88 a | 1435.36 a | 5.68 a | 6.96 a |
TN-04-142, Ir180 | 405.39 b | 112.26 b | 1874.30 b | 10.39 b | 14.92 b |
TN-04-59, Ir60 | 502.82 a | 35.26 a | 1510.95 a | 11.82 a | 11.11 a |
TN-04-59, Ir180 | 771.29 b | 71.34 b | 1646.83 a | 13.41 a | 4.04 b |
TN-04-86, Ir60 | 580.96 a | 95.72 a | 1606.58 a | 19.09 a | 7.33 a |
TN-04-86, Ir180 | 680.00 b | 266.97 b | 1734.27 a | 28.15 b | 9.28 a |
TN-04-90, Ir60 | 501.32 a | 135.35 a | 1769.99 a | 14.57 a | 6.38 a |
TN-04-90, Ir180 | 613.56 a | 74.12 b | 1778.01 a | 14.51 a | 6.75 a |
Classifier | Predicted Class (%) | Average Accuracy (%) | Predicted Class (%) | Average Accuracy (%) | Actual Class | ||||
---|---|---|---|---|---|---|---|---|---|
Ir60 | Ir120 | Ir180 | Ir60 | Ir120 | Ir180 | ||||
MGS2 | TN-04-134 | ||||||||
functions.Logistic | 53 | 34 | 13 | 54 | 48 | 34 | 18 | Ir60 | |
27 | 43 | 30 | 21 | 43 | 36 | 47 | Ir120 | ||
11 | 23 | 66 | 12 | 37 | 51 | Ir180 | |||
KGS23 | TN-04-142 | ||||||||
functions.Logistic | 14 | 23 | 63 | 40 | 50 | 30 | 20 | Ir60 | |
4 | 52 | 44 | 38 | 23 | 39 | 48 | Ir120 | ||
12 | 34 | 54 | 14 | 16 | 70 | Ir180 | |||
TN-04-78 | TN-04-59 | ||||||||
functions.Logistic | 33 | 61 | 6 | 43 | 62 | 26 | 12 | Ir60 | |
12 | 69 | 19 | 28 | 55 | 17 | 59 | Ir120 | ||
9 | 65 | 26 | 18 | 23 | 59 | Ir180 | |||
TN-04-79 | TN-04-86 | ||||||||
functions.Logistic | 54 | 42 | 4 | 68 | 43 | 22 | 35 | Ir60 | |
39 | 57 | 4 | 22 | 45 | 33 | 46 | Ir120 | ||
2 | 6 | 92 | 30 | 19 | 51 | Ir180 | |||
TN-04-129 | TN-04-90 | ||||||||
functions.Logistic | 53 | 35 | 12 | 48 | 73 | 24 | 3 | Ir60 | |
20 | 72 | 8 | 28 | 65 | 7 | 58 | Ir120 | ||
31 | 49 | 20 | 28 | 36 | 36 | Ir180 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazari, L.; Ropelewska, E.; Zadeh, M.A. Micronutrient Content and Geometrical Features of Grain Sorghum Subjected to Water Stress. Chem. Proc. 2022, 10, 25. https://doi.org/10.3390/IOCAG2022-12187
Nazari L, Ropelewska E, Zadeh MA. Micronutrient Content and Geometrical Features of Grain Sorghum Subjected to Water Stress. Chemistry Proceedings. 2022; 10(1):25. https://doi.org/10.3390/IOCAG2022-12187
Chicago/Turabian StyleNazari, Leyla, Ewa Ropelewska, and Mehrab Ata Zadeh. 2022. "Micronutrient Content and Geometrical Features of Grain Sorghum Subjected to Water Stress" Chemistry Proceedings 10, no. 1: 25. https://doi.org/10.3390/IOCAG2022-12187
APA StyleNazari, L., Ropelewska, E., & Zadeh, M. A. (2022). Micronutrient Content and Geometrical Features of Grain Sorghum Subjected to Water Stress. Chemistry Proceedings, 10(1), 25. https://doi.org/10.3390/IOCAG2022-12187