Extracellular Matrix—Key to Maintaining Function of Encapsulated Human Stem Cell Differentiated Islet Clusters Seeded into Scaffolds as a Diabetes Therapy
Abstract
1. Introduction
2. Materials and Methods
2.1. Differentiation of β-Cell Clusters from Human Embryonic Stem Cells
2.2. Human Pancreatic ECM Preparation
2.3. Microencapsulation
2.4. Melt Electrospin Written (MEW) Scaffolds
2.5. Assembly of the Device
2.6. Viability Assessment
2.7. Glucose-Stimulated Insulin Secretion
2.8. Animal Model
2.9. Histology
2.10. Statistical Methods
3. Results
3.1. Characterisation of Encapsulated Islet Clusters
3.2. Blood Glucose Levels Normalised with IP Encapsulated Islet Clusters
3.3. Introduction of Scaffolds Fails to Achieve Normalisation of BGL in the Long Term
3.4. Addition of ECM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| T1D | Type 1 diabetes |
| ECM | Extracellular matrix |
| SC | Subcutaneously |
| IP | Intraperitoneally |
| BGL | Blood glucose levels |
| PBS | Phosphate-buffered saline |
| CFDA | 6-carboxyfluorescein diacetate |
| PI | Propidium iodide |
| KRB | Krebs Ringer Buffer |
| ELISA | Enzyme-linked immunosorbent assay |
| STZ | Streptozotocin |
| H & E | Haematoxylin and eosin |
| NOD/SCID | Nonobese diabetic/severe combined immunodeficiency |
| NSG | NOD/SCID gamma |
| SEM | Standard error of the mean |
References
- Quattrin, T.; Mastrandrea, L.D.; Walker, L.S.K. Type 1 diabetes. Lancet 2023, 401, 2149–2162. [Google Scholar] [CrossRef]
- Gregory, G.A.; Robinson, T.I.G.; Linklater, S.E.; Wang, F.; Colagiuri, S.; de Beaufort, C.; Donaghue, K.C.; International Diabetes Federation Diabetes Atlas Type 1 Diabetes in Adults Special Interest Group; Magliano, D.J.; Maniam, J.; et al. Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: A modelling study. Lancet Diabetes Endocrinol. 2022, 10, 741–760. [Google Scholar] [CrossRef]
- Dovc, K.; Battelino, T. Evolution of Diabetes Technology. Endocrinol. Metab. Clin. North. Am. 2020, 49, 1–18. [Google Scholar] [CrossRef]
- Larson-Wadd, K.; Belani, K.G. Pancreas and islet cell transplantation. Anesthesiol. Clin. North. Am. 2004, 22, 663–674. [Google Scholar] [CrossRef]
- Vaithilingam, V.; Tuch, B.E. Islet transplantation and encapsulation: An update on recent developments. Rev. Diabet. Stud. 2011, 8, 51–67. [Google Scholar] [CrossRef] [PubMed]
- Mridha, A.R.; Dargaville, T.R.; Dalton, P.D.; Carroll, L.; Morris, M.B.; Vaithilingam, V.; Tuch, B.E. Prevascularized Retrievable Hybrid Implant to Enhance Function of Subcutaneous Encapsulated Islets. Tissue Eng. Part A 2022, 28, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Johansen, C.G.; Holcomb, K.; Sela, A.; Morrall, S.; Park, D.; Farnsworth, N.L. Extracellular matrix stiffness mediates insulin secretion in pancreatic islets via mechanosensitive Piezo1 channel regulated Ca(2+) dynamics. Matrix Biol. Plus 2024, 22, 100148. [Google Scholar] [CrossRef]
- Tremmel, D.M.; Sackett, S.D.; Feeney, A.K.; Mitchell, S.A.; Schaid, M.D.; Polyak, E.; Chlebeck, P.J.; Gupta, S.; Kimple, M.E.; Fernandez, L.A.; et al. A human pancreatic ECM hydrogel optimized for 3-D modeling of the islet microenvironment. Sci. Rep. 2022, 12, 7188. [Google Scholar] [CrossRef]
- Kuwabara, R.; Qin, T.; Alberto Llacua, L.; Hu, S.; Boekschoten, M.V.; de Haan, B.J.; Smink, A.M.; de Vos, P. Extracellular matrix inclusion in immunoisolating alginate-based microcapsules promotes longevity, reduces fibrosis, and supports function of islet allografts in vivo. Acta Biomater. 2023, 158, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Stendahl, J.C.; Kaufman, D.B.; Stupp, S.I. Extracellular matrix in pancreatic islets: Relevance to scaffold design and transplantation. Cell Transplant. 2009, 18, 1–12. [Google Scholar] [CrossRef]
- Yu, M.; Agarwal, D.; Korutla, L.; May, C.L.; Wang, W.; Griffith, N.N.; Hering, B.J.; Kaestner, K.H.; Velazquez, O.C.; Markmann, J.F.; et al. Islet transplantation in the subcutaneous space achieves long-term euglycaemia in preclinical models of type 1 diabetes. Nat. Metab. 2020, 2, 1013–1020. [Google Scholar] [CrossRef]
- Molakandov, K.; Berti, D.A.; Beck, A.; Elhanani, O.; Walker, M.D.; Soen, Y.; Yavriyants, K.; Zimerman, M.; Volman, E.; Toledo, I.; et al. Selection for CD26(−) and CD49A(+) Cells from Pluripotent Stem Cells-Derived Islet-Like Clusters Improves Therapeutic Activity in Diabetic Mice. Front. Endocrinol. 2021, 12, 635405. [Google Scholar] [CrossRef] [PubMed]
- Sackett, S.D.; Tremmel, D.M.; Ma, F.; Feeney, A.K.; Maguire, R.M.; Brown, M.E.; Zhou, Y.; Li, X.; O’Brien, C.; Li, L.; et al. Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Sci. Rep. 2018, 8, 10452. [Google Scholar] [CrossRef]
- Chamberlain, C.S.; Tremmel, D.M.; Khan, A.P.; Santos, E.A.; Kapadia, D.; Leavens, C.; Gorski, K.M.; Hamadeh, R.; Feeney, A.K.; Odorico, J.; et al. Protocol for decellularizing and delipidizing human pancreatic tissue into native hydrogel. STAR Protoc. 2025, 6, 103997. [Google Scholar] [CrossRef]
- Li, Z.; Tremmel, D.M.; Ma, F.; Yu, Q.; Ma, M.; Delafield, D.G.; Shi, Y.; Wang, B.; Mitchell, S.A.; Feeney, A.K.; et al. Proteome-wide and matrisome-specific alterations during human pancreas development and maturation. Nat. Commun. 2021, 12, 1020. [Google Scholar] [CrossRef]
- Vaithilingam, V.; Kollarikova, G.; Qi, M.; Lacik, I.; Oberholzer, J.; Guillemin, G.J.; Tuch, B.E. Effect of prolonged gelling time on the intrinsic properties of barium alginate microcapsules and its biocompatibility. J. Microencapsul. 2011, 28, 499–507. [Google Scholar] [CrossRef]
- Balboa, D.; Barsby, T.; Lithovius, V.; Saarimaki-Vire, J.; Omar-Hmeadi, M.; Dyachok, O.; Montaser, H.; Lund, P.E.; Yang, M.; Ibrahim, H.; et al. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nat. Biotechnol. 2022, 40, 1042–1055. [Google Scholar] [CrossRef]
- Tuch, B.E.; Jones, A.; Turtle, J.R. Maturation of the response of human fetal pancreatic expiants to glucose. Diabetologia 1985, 28, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Yoo, J.J.; Atala, A. Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair. Urology 1999, 54, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Dejardin, L.M.; Arnoczky, S.P.; Ewers, B.J.; Haut, R.C.; Clarke, R.B. Tissue-engineered rotator cuff tendon using porcine small intestine submucosa. Histologic and mechanical evaluation in dogs. Am. J. Sports Med. 2001, 29, 175–184. [Google Scholar] [CrossRef]
- Huber, J.E.; Spievack, A.; Simmons-Byrd, A.; Ringel, R.L.; Badylak, S. Extracellular matrix as a scaffold for laryngeal reconstruction. Ann. Otol. Rhinol. Laryngol. 2003, 112, 428–433. [Google Scholar] [CrossRef]
- Kropp, B.P.; Rippy, M.K.; Badylak, S.F.; Adams, M.C.; Keating, M.A.; Rink, R.C.; Thor, K.B. Regenerative urinary bladder augmentation using small intestinal submucosa: Urodynamic and histopathologic assessment in long-term canine bladder augmentations. J. Urol. 1996, 155, 2098–2104. [Google Scholar] [CrossRef] [PubMed]
- Krishtul, S.; Skitel Moshe, M.; Kovrigina, I.; Baruch, L.; Machluf, M. ECM-based bioactive microencapsulation significantly improves islet function and graft performance. Acta Biomater. 2023, 171, 249–260. [Google Scholar] [CrossRef]
- Tuch, B.E.; Keogh, G.W.; Williams, L.J.; Wu, W.; Foster, J.L.; Vaithilingam, V.; Philips, R. Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care 2009, 32, 1887–1889. [Google Scholar] [CrossRef]
- Ramzy, A.; Thompson, D.M.; Ward-Hartstonge, K.A.; Ivison, S.; Cook, L.; Garcia, R.V.; Loyal, J.; Kim, P.T.W.; Warnock, G.L.; Levings, M.K.; et al. Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes. Cell Stem Cell 2021, 28, 2047–2061.e5. [Google Scholar] [CrossRef]
- Bachul, P.J.; Perez-Gutierrez, A.; Juengel, B.; Golab, K.; Basto, L.; Perea, L.; Wang, L.; Tibudan, M.; Thomas, C.; Philipson, L.H.; et al. Modified Approach for Improved Islet Allotransplantation into Prevascularized Sernova Cell Pouch Device: Preliminary Results of the Phase I/II Clinical Trial at University of Chicago. Diabetes 2022, 71, 306-OR. [Google Scholar] [CrossRef]
- Carlsson, P.O.; Espes, D.; Sedigh, A.; Rotem, A.; Zimerman, B.; Grinberg, H.; Goldman, T.; Barkai, U.; Avni, Y.; Westermark, G.T.; et al. Transplantation of macroencapsulated human islets within the bioartificial pancreas betaAir to patients with type 1 diabetes mellitus. Am. J. Transplant. 2018, 18, 1735–1744. [Google Scholar] [CrossRef]
- Yao, X.; Gong, Z.; Yin, W.; Li, H.; Douroumis, D.; Huang, L.; Li, H. Islet cell spheroids produced by a thermally sensitive scaffold: A new diabetes treatment. J. Nanobiotechnol 2024, 22, 657. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.; Kumar, R.; Ram, J.; Sharma, M.; Luthra-Guptasarma, M. Control of fibrotic changes through the synergistic effects of anti-fibronectin antibody and an RGDS-tagged form of the same antibody. Sci. Rep. 2016, 6, 30872. [Google Scholar] [CrossRef] [PubMed]
- Pehrsson, M.; Mortensen, J.H.; Manon-Jensen, T.; Bay-Jensen, A.C.; Karsdal, M.A.; Davies, M.J. Enzymatic cross-linking of collagens in organ fibrosis—Resolution and assessment. Expert. Rev. Mol. Diagn 2021, 21, 1049–1064. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, D.; Huang, G.; Xue, M.; Fang, Y.; Lu, L.; Zhang, J.; Xie, M.; Ye, Z. Laminin alpha1 as a target for the treatment of epidural fibrosis by regulating fibrotic mechanisms. Int. J. Mol. Med. 2023, 51, 2. [Google Scholar]
- Giannandrea, M.; Parks, W.C. Diverse functions of matrix metalloproteinases during fibrosis. Dis. Model. Mech. 2014, 7, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Anderegg, U.; Halfter, N.; Schnabelrauch, M.; Hintze, V. Collagen/glycosaminoglycan-based matrices for controlling skin cell responses. Biol. Chem. 2021, 402, 1325–1335. [Google Scholar] [CrossRef] [PubMed]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bai, X.; Chen, H.; Odorico, J.; Chamberlain, C.; Molakandov, K.; Dargaville, T.R.; Revel, M.; Tuch, B.E. Extracellular Matrix—Key to Maintaining Function of Encapsulated Human Stem Cell Differentiated Islet Clusters Seeded into Scaffolds as a Diabetes Therapy. Diabetology 2026, 7, 5. https://doi.org/10.3390/diabetology7010005
Bai X, Chen H, Odorico J, Chamberlain C, Molakandov K, Dargaville TR, Revel M, Tuch BE. Extracellular Matrix—Key to Maintaining Function of Encapsulated Human Stem Cell Differentiated Islet Clusters Seeded into Scaffolds as a Diabetes Therapy. Diabetology. 2026; 7(1):5. https://doi.org/10.3390/diabetology7010005
Chicago/Turabian StyleBai, Xu, Hui Chen, Jon Odorico, Connie Chamberlain, Kfir Molakandov, Tim R. Dargaville, Michel Revel, and Bernard E. Tuch. 2026. "Extracellular Matrix—Key to Maintaining Function of Encapsulated Human Stem Cell Differentiated Islet Clusters Seeded into Scaffolds as a Diabetes Therapy" Diabetology 7, no. 1: 5. https://doi.org/10.3390/diabetology7010005
APA StyleBai, X., Chen, H., Odorico, J., Chamberlain, C., Molakandov, K., Dargaville, T. R., Revel, M., & Tuch, B. E. (2026). Extracellular Matrix—Key to Maintaining Function of Encapsulated Human Stem Cell Differentiated Islet Clusters Seeded into Scaffolds as a Diabetes Therapy. Diabetology, 7(1), 5. https://doi.org/10.3390/diabetology7010005

