Youth-Onset Type 2 Diabetes: Update on Epidemiology, Pathophysiology, Diagnosis, and Management Strategies
Abstract
1. Introduction
2. Epidemiology
3. Risk Factors
4. Screening and Diagnosis
5. Clinical Presentation
6. Complications
7. Management
7.1. Lifestyle
7.2. Glucose Monitoring
7.3. Metformin
7.4. GLP-1 Receptor Agonists (GLP-1 RAs)
7.5. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors
7.6. Dipeptidyl Peptidase-4 (DPP-4) Inhibitors
7.7. Insulin Therapy
7.8. Bariatric Surgery
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2025. Diabetes Care 2025, 48 (Suppl. S1), S27–S49. [Google Scholar] [CrossRef]
- Mayer-Davis, E.J.; Lawrence, J.M.; Dabelea, D.; Divers, J.; Isom, S.; Dolan, L.; Imperatore, G.; Linder, B.; Marcovina, S.; Pettitt, D.J.; et al. Incidence Trends of Type 1 and Type 2 Diabetes among Youths, 2002–2012. N. Engl. J. Med. 2017, 376, 1419–1429. [Google Scholar] [CrossRef]
- Dabelea, D.; Mayer-Davis, E.J.; Saydah, S.; Imperatore, G.; Linder, B.; Divers, J.; Bell, R.; Badaru, A.; Talton, J.W.; Crume, T.; et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA 2014, 311, 1778–1786. [Google Scholar] [CrossRef] [PubMed]
- Reinehr, T. Long-term effects of adolescent obesity: Time to act. Nat. Rev. Endocrinol. 2018, 14, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Bjerregaard, L.G.; Jensen, B.W.; Ängquist, L.; Osler, M.; Sørensen, T.I.A.; Baker, J.L. Change in Overweight from Childhood to Early Adulthood and Risk of Type 2 Diabetes. N. Engl. J. Med. 2018, 378, 1302–1312. [Google Scholar] [CrossRef]
- Arslanian, S.A. Type 2 diabetes mellitus in children: Pathophysiology and risk factors. J. Pediatr. Endocrinol. Metab. 2000, 13 (Suppl. S6), 1385–1394. [Google Scholar] [CrossRef]
- Shah, A.S.; Barrientos-Pérez, M.; Chang, N.; Fu, J.F.; Hannon, T.S.; Kelsey, M.; Peña, A.S.; Pinhas-Hamiel, O.; Urakami, T.; Wicklow, B.; et al. ISPAD Clinical Practice Consensus Guidelines 2024: Type 2 Diabetes in Children and Adolescents. Horm. Res. Paediatr. 2024, 97, 555–583. [Google Scholar] [CrossRef] [PubMed]
- Tinajero, M.G.; Malik, V.S. An Update on the Epidemiology of Type 2 Diabetes: A Global Perspective. Endocrinol. Metab. Clin. N. Am. 2021, 50, 337–355. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Park, H.S.; Huh, B.W.; Seo, S.H.; Seo, D.H.; Ahn, S.H.; Hong, S.; Suh, Y.J.; Kim, S.H. Prevalence and risk of diabetic complications in young-onset versus late-onset type 2 diabetes mellitus. Diabetes Metab. 2022, 48, 101389. [Google Scholar] [CrossRef]
- Bacha, F.; Hannon, T.S.; Tosur, M.; Pike, J.M.; Butler, A.; Tommerdahl, K.L.; Zeitler, P.S. Pathophysiology and Treatment of Prediabetes and Type 2 Diabetes in Youth. Diabetes Care 2024, 47, 2038–2049. [Google Scholar] [CrossRef]
- Valaiyapathi, B.; Gower, B.; Ashraf, A.P. Pathophysiology of Type 2 Diabetes in Children and Adolescents. Curr. Diabetes Rev. 2020, 16, 220–229. [Google Scholar]
- Bombaci, B.; Torre, A.; Longo, A.; Pecoraro, M.; Papa, M.; Sorrenti, L.; La Rocca, M.; Lombardo, F.; Salzano, G. Psychological and Clinical Challenges in the Management of Type 1 Diabetes during Adolescence: A Narrative Review. Children 2024, 11, 1085. [Google Scholar] [CrossRef]
- Kelsey, M.M.; Zeitler, P.S. Insulin Resistance of Puberty. Curr. Diabetes Rep. 2016, 16, 64. [Google Scholar] [CrossRef]
- Robertson, R.P.; Harmon, J.; Tran, P.O.T.; Poitout, V. Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 2004, 53 (Suppl. S1), S119–S124. [Google Scholar] [CrossRef]
- Zhang, K.; Kan, C.; Han, F.; Zhang, J.; Ding, C.; Guo, Z.; Huang, N.; Zhang, Y.; Hou, N.; Sun, X. Global, Regional, and National Epidemiology of Diabetes in Children From 1990 to 2019. JAMA Pediatr. 2023, 177, 837–846. [Google Scholar] [CrossRef]
- Imperatore, G.; Boyle, J.P.; Thompson, T.J.; Case, D.; Dabelea, D.; Hamman, R.F.; Lawrence, J.M.; Liese, A.D.; Liu, L.L.; Mayer-Davis, E.J.; et al. Projections of type 1 and type 2 diabetes burden in the U.S. population aged <20 years through 2050: Dynamic modeling of incidence, mortality, and population growth. Diabetes Care 2012, 35, 2515–2520. [Google Scholar] [CrossRef]
- Wu, H.; Patterson, C.C.; Zhang, X.; Ghani, R.B.A.; Magliano, D.J.; Boyko, E.J.; Ogle, G.D.; Luk, A.O. Worldwide estimates of incidence of type 2 diabetes in children and adolescents in 2021. Diabetes Res. Clin. Pract. 2022, 185, 109785. [Google Scholar] [CrossRef] [PubMed]
- Divers, J.; Mayer-Davis, E.J.; Lawrence, J.M.; Isom, S.; Dabelea, D.; Dolan, L.; Imperatore, G.; Marcovina, S.; Pettitt, D.J.; Pihoker, C.; et al. Trends in Incidence of Type 1 and Type 2 Diabetes Among Youths—Selected Counties and Indian Reservations, United States, 2002–2015. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Galler, A.; Stange, T.; Müller, G.; Näke, A.; Vogel, C.; Kapellen, T.; Bartelt, H.; Kunath, H.; Koch, R.; Kiess, W.; et al. Incidence of childhood diabetes in children aged less than 15 years and its clinical and metabolic characteristics at the time of diagnosis: Data from the Childhood Diabetes Registry of Saxony, Germany. Horm. Res. Paediatr. 2010, 74, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Srivastava, S.; Mishra, P.S.; Mooss, E.T.K. Prevalence of pre-diabetes/type 2 diabetes among adolescents (10–19 years) and its association with different measures of overweight/obesity in India: A gendered perspective. BMC Endocr. Disord. 2021, 21, 146. [Google Scholar] [CrossRef]
- Lawrence, J.M.; Divers, J.; Isom, S.; Saydah, S.; Imperatore, G.; Pihoker, C.; Marcovina, S.M.; Mayer-Davis, E.J.; Hamman, R.F.; Dolan, L.; et al. Trends in Prevalence of Type 1 and Type 2 Diabetes in Children and Adolescents in the US, 2001–2017. JAMA 2021, 326, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Hamman, R.F.; Bell, R.A.; Dabelea, D.; D’Agostino, R.B.; Dolan, L.; Imperatore, G.; Lawrence, J.M.; Linder, B.; Marcovina, S.M.; Mayer-Davis, E.J.; et al. The SEARCH for Diabetes in Youth study: Rationale, findings, and future directions. Diabetes Care 2014, 37, 3336–3344. [Google Scholar] [CrossRef]
- Misra, S.; Holman, N.; Barron, E.; Knighton, P.; Warner, J.; Kar, P.; Young, B.; Valabhji, J. Characteristics and care of young people with type 2 diabetes included in the national diabetes audit datasets for England. Diabet. Med. 2023, 40, e14940. [Google Scholar] [CrossRef]
- Copeland, K.C.; Zeitler, P.; Geffner, M.; Guandalini, C.; Higgins, J.; Hirst, K.; Kaufman, F.R.; Linder, B.; Marcovina, S.; McGuigan, P.; et al. Characteristics of adolescents and youth with recent-onset type 2 diabetes: The TODAY cohort at baseline. J. Clin. Endocrinol. Metab. 2011, 96, 159–167. [Google Scholar] [CrossRef]
- Stahl-Pehe, A.; Baechle, C.; Lanzinger, S.; Urschitz, M.S.; Reinauer, C.; Kamrath, C.; Holl, R.W.; Rosenbauer, J. Trends in the incidence of type 1 diabetes and type 2 diabetes in children and adolescents in North Rhine-Westphalia, Germany, from 2002 to 2022. Diabetes Metab. 2024, 50, 101567. [Google Scholar] [CrossRef] [PubMed]
- Molina-Díaz, J.M.; Vargas-Terrez, B.E.; Medina-Bravo, P.G.; Martínez-Ambrosio, A.; Miranda-Lora, A.L.; Klünder-Klünder, M. Prevalence of type 2 diabetes mellitus in the pediatric population of a third-level care hospital in Mexico City in 2013 and 2018. World J. Diabetes 2023, 14, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Dubayee, M.A.; Juraibah, F.A.; Alfaraidi, H.; Alghnam, S.; Aldahash, R.; Attia, N.; Shaikh, A.; Habeb, A.; Jabri, A.; Zaben, A.; et al. Establishing the Saudi pediatric and youth diabetes registry: Initial data and challenges. Sudan. J. Paediatr. 2024, 24, 10–20. [Google Scholar] [CrossRef]
- Abdelhameed, F.; Giuffrida, A.; Thorp, B.; Moorthy, M.K.; Gevers, E.F. Exploring the Surge in Paediatric Type 2 Diabetes in an Inner-City London Centre-A Decade-Long Analysis of Incidence, Outcomes, and Transition. Children 2024, 11, 173. [Google Scholar] [CrossRef]
- Zuckerman Levin, N.; Cohen, M.; Phillip, M.; Tenenbaum, A.; Koren, I.; Tenenbaum-Rakover, Y.; Admoni, O.; Hershkovitz, E.; Haim, A.; Aronovitch, K.M.; et al. Youth-onset type 2 diabetes in Israel: A national cohort. Pediatr. Diabetes 2022, 23, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Sellers, E.A.C.; McLeod, L.; Prior, H.J.; Dragan, R.; Wicklow, B.A.; Ruth, C. Incidence and prevalence of type 2 diabetes in Manitoba children 2009–10 to 2017–18: First Nation versus all other Manitobans. Diabetes Res. Clin. Pract. 2024, 208, 111097. [Google Scholar] [CrossRef]
- Bombaci, B.; Passanisi, S.; Sorrenti, L.; Salzano, G.; Lombardo, F. Examining the associations between COVID-19 infection and pediatric type 1 diabetes. Expert. Rev. Clin. Immunol. 2023, 19, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Magge, S.N.; Wolf, R.M.; Pyle, L.; Brown, E.A.; Benavides, V.C.; Bianco, M.E.; Chao, L.C.; Cymbaluk, A.; Balikcioglu, P.G.; Halpin, K.; et al. The Coronavirus Disease 2019 Pandemic is Associated with a Substantial Rise in Frequency and Severity of Presentation of Youth-Onset Type 2 Diabetes. J. Pediatr. 2022, 251, 51–59.e2. [Google Scholar] [CrossRef] [PubMed]
- Lange, S.J.; Kompaniyets, L.; Freedman, D.S.; Kraus, E.M.; Porter, R.; DNP3; Blanck, H.M.; Goodman, A.B. Longitudinal Trends in Body Mass Index Before and During the COVID-19 Pandemic Among Persons Aged 2–19 Years—United States, 2018–2020. MMWR Morb. Mortal Wkly. Rep. 2021, 70, 1278–1283. [Google Scholar] [CrossRef]
- DeLacey, S.; Arzu, J.; Levin, L.; Ranganna, A.; Swamy, A.; Bianco, M.E. Impact of SARS-CoV2 on youth onset type 2 diabetes new diagnoses and severity. J. Diabetes 2022, 14, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Denzer, C.; Rosenbauer, J.; Klose, D.; Körner, A.; Reinehr, T.; Baechle, C.; Schröder, C.; Wiegand, S.; Holl, R.W.; Prinz, N.; et al. Is COVID-19 to Blame? Trends of Incidence and Sex Ratio in Youth-Onset Type 2 Diabetes in Germany. Diabetes Care 2023, 46, 1379–1387. [Google Scholar] [CrossRef]
- Hani, N.S.; Thomas, I.H. Changes in Pediatric Type 2 Diabetes During the COVID-19 Pandemic. Pediatr. Ann. 2024, 53, e249–e253. [Google Scholar] [CrossRef]
- Abbasi, A.; Juszczyk, D.; van Jaarsveld, C.H.M.; Gulliford, M.C. Body Mass Index and Incident Type 1 and Type 2 Diabetes in Children and Young Adults: A Retrospective Cohort Study. J. Endocr. Soc. 2017, 1, 524–537. [Google Scholar] [CrossRef]
- Nelson, M.C.; Neumark-Stzainer, D.; Hannan, P.J.; Sirard, J.R.; Story, M. Longitudinal and secular trends in physical activity and sedentary behavior during adolescence. Pediatrics 2006, 118, e1627–e1634. [Google Scholar] [CrossRef]
- Verloigne, M.; Van Lippevelde, W.; Maes, L.; Yıldırım, M.; Chinapaw, M.; Manios, Y.; Androutsos, O.; Kovacs, E.; Bringolf-Isler, B.; Brug, J.; et al. Levels of physical activity and sedentary time among 10- to 12-year-old boys and girls across 5 European countries using accelerometers: An observational study within the ENERGY-project. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 34. [Google Scholar] [CrossRef]
- Boyko, E.J.; Fujimoto, W.Y.; Leonetti, D.L.; Newell-Morris, L. Visceral adiposity and risk of type 2 diabetes: A prospective study among Japanese Americans. Diabetes Care 2000, 23, 465–471. [Google Scholar] [CrossRef] [PubMed]
- González, N.; Moreno-Villegas, Z.; González-Bris, A.; Egido, J.; Lorenzo, Ó. Regulation of visceral and epicardial adipose tissue for preventing cardiovascular injuries associated to obesity and diabetes. Cardiovasc. Diabetol. 2017, 16, 44. [Google Scholar] [CrossRef]
- Maffeis, C.; Morandi, A. Body composition and insulin resistance in children. Eur. J. Clin. Nutr. 2018, 72, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Franzago, M.; Fraticelli, F.; Stuppia, L.; Vitacolonna, E. Nutrigenetics, epigenetics and gestational diabetes: Consequences in mother and child. Epigenetics 2019, 14, 215–235. [Google Scholar] [CrossRef] [PubMed]
- Halipchuk, J.; Temple, B.; Dart, A.; Martin, D.; Sellers, E.A.C. Prenatal, Obstetric and Perinatal Factors Associated with the Development of Childhood-Onset Type 2 Diabetes. Can. J. Diabetes 2018, 42, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Darendeliler, F. IUGR: Genetic influences, metabolic problems, environmental associations/triggers, current and future management. Best Pract. Res. Clin. Endocrinol. Metab. 2019, 33, 101260. [Google Scholar] [CrossRef]
- Tang, Y.; Meng, L.; Li, D.; Yang, M.; Zhu, Y.; Li, C.; Jiang, Z.; Yu, P.; Li, Z.; Song, H.; et al. Interaction of sleep quality and sleep duration on glycemic control in patients with type 2 diabetes mellitus. Chin. Med. J. 2014, 127, 3543–3547. [Google Scholar]
- Magliano, D.J.; Boyko, E.J.; IDF Diabetes Atlas 10th Edition Scientific Committee. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- Srinivasan, S.; Chen, L.; Todd, J.; Divers, J.; Gidding, S.; Chernausek, S.; Gubitosi-Klug, R.A.; Kelsey, M.M.; Shah, R.; Black, M.H.; et al. The First Genome-Wide Association Study for Type 2 Diabetes in Youth: The Progress in Diabetes Genetics in Youth (ProDiGY) Consortium. Diabetes 2021, 70, 996–1005. [Google Scholar] [CrossRef]
- Marzuillo, P.; Di Sessa, A.; Umano, G.R.; Nunziata, L.; Cirillo, G.; Perrone, L.; del Giudice, E.M.; Grandone, A. Novel association between the nonsynonymous A803G polymorphism of the N-acetyltransferase 2 gene and impaired glucose homeostasis in obese children and adolescents. Pediatr. Diabetes 2017, 18, 478–484. [Google Scholar] [CrossRef]
- Burcu, M.; Zito, J.M.; Safer, D.J.; Magder, L.S.; dosReis, S.; Shaya, F.T.; Rosenthal, G.L. Association of Antidepressant Medications with Incident Type 2 Diabetes Among Medicaid-Insured Youths. JAMA Pediatr. 2017, 171, 1200–1207. [Google Scholar] [CrossRef]
- Holt, R.I.G. Association Between Antipsychotic Medication Use and Diabetes. Curr. Diabetes Rep. 2019, 19, 96. [Google Scholar] [CrossRef]
- International Expert Committee. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 2009, 32, 1327–1334. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.L.; Pyle, L.; Kelsey, M.; Newnes, L.; Zeitler, P.S.; Nadeau, K.J. Screening for type 2 diabetes and prediabetes in obese youth: Evaluating alternate markers of glycemia—1,5-anhydroglucitol, fructosamine, and glycated albumin. Pediatr. Diabetes 2016, 17, 206–211. [Google Scholar] [CrossRef]
- Gomez-Perez, F.J.; Aguilar-Salinas, C.A.; Almeda-Valdes, P.; Cuevas-Ramos, D.; Lerman Garber, I.; Rull, J.A. HbA1c for the diagnosis of diabetes mellitus in a developing country. A position article. Arch. Med. Res. 2010, 41, 302–308. [Google Scholar] [CrossRef]
- Ehehalt, S.; Wiegand, S.; Körner, A.; Schweizer, R.; Liesenkötter, K.P.; Partsch, C.J.; Blumenstock, G.; Spielau, U.; Denzer, C.; Ranke, M.B.; et al. Diabetes screening in overweight and obese children and adolescents: Choosing the right test. Eur. J. Pediatr. 2017, 176, 89–97. [Google Scholar] [CrossRef]
- Love-Osborne, K.A.; Sheeder, J.L.; Nadeau, K.J.; Zeitler, P. Longitudinal follow up of dysglycemia in overweight and obese pediatric patients. Pediatr. Diabetes 2018, 19, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.S.; So, C.H.; Lee, H.S.; Hwang, J.S. Glycated hemoglobin A1c as a screening test for detecting type 2 diabetes mellitus in obese children and adolescents. J. Pediatr. Endocrinol. Metab. 2018, 31, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Ni, J.; Su, H.; He, X.; Lu, W.; Zhu, W.; Wang, Y.; Ma, X.; Bao, Y.; Zhou, J. One-Hour Postload Glucose Is a More Sensitive Marker of Impaired β-Cell Function Than Two-Hour Postload Glucose. Diabetes 2025, 74, 36–42. [Google Scholar] [CrossRef]
- Ravà, L.; Fintini, D.; Mariani, M.; Deodati, A.; Inzaghi, E.; Pedicelli, S.; Bizzarri, C.; Cappa, M.; Cianfarani, S.; Manco, M. High 1-h glucose in youths with obesity as marker of prediabetes and cardiovascular risk. J. Endocrinol. Investig. 2023, 46, 2555–2562. [Google Scholar] [CrossRef]
- Harris, D.L.; Battin, M.R.; Weston, P.J.; Harding, J.E. Continuous glucose monitoring in newborn babies at risk of hypoglycemia. J. Pediatr. 2010, 157, 198–202.e1. [Google Scholar] [CrossRef]
- Agrawal, S.; Gensure, R. Commentary on the Impact of Obesity on PediatricDiabetes. Clin. Ther. 2018, 40, 1631–1637. [Google Scholar] [CrossRef]
- TODAY Study Group; Zeitler, P.; Hirst, K.; Pyle, L.; Linder, B.; Copeland, K.; Arslanian, S.; Cuttler, L.; Nathan, D.M.; Tollefsen, S.; et al. A clinical trial to maintain glycemic control in youth with type 2 diabetes. N. Engl. J. Med. 2012, 366, 2247–2256. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.G.; Hsu, J.W.; Jahoor, F.; Coraza, I.; Bain, J.R.; Stevens, R.D.; Iyer, D.; Nalini, R.; Ozer, K.; Hampe, C.S.; et al. Pathogenesis of A−β+ ketosis-prone diabetes. Diabetes 2013, 62, 912–922. [Google Scholar] [CrossRef]
- Kubota-Mishra, E.; Huang, X.; Minard, C.G.; Astudillo, M.; Refaey, A.; Montes, G.; Sisley, S.; Ram, N.; Winter, W.E.; Naylor, R.N.; et al. High Prevalence of A-β+ Ketosis-Prone Diabetes in Children with Type 2 Diabetes and Diabetic Ketoacidosis at Diagnosis: Evidence from the Rare and Atypical Diabetes Network (RADIANT). Pediatr. Diabetes 2024, 2024, 5907924. [Google Scholar] [CrossRef]
- Muneer, M.; Akbar, I. Acute Metabolic Emergencies in Diabetes: DKA, HHS and EDKA. Adv. Exp. Med. Biol. 2021, 1307, 85–114. [Google Scholar]
- Zeitler, P.; Haqq, A.; Rosenbloom, A.; Glaser, N.; Drugs and Therapeutics Committee of the Lawson Wilkins Pediatric Endocrine Society. Hyperglycemic hyperosmolar syndrome in children: Pathophysiological considerations and suggested guidelines for treatment. J. Pediatr. 2011, 158, 9–14.e2. [Google Scholar] [CrossRef]
- Glaser, N.; Fritsch, M.; Priyambada, L.; Rewers, A.; Cherubini, V.; Estrada, S.; Wolfsdorf, J.I.; Codner, E. ISPAD clinical practice consensus guidelines 2022: Diabetic ketoacidosis and hyperglycemic hyperosmolar state. Pediatr. Diabetes 2022, 23, 835–856. [Google Scholar] [CrossRef]
- Curran, J.A.; Haynes, A.; Davis, E.A. Clinical characteristics of Western Australian children diagnosed with type 2 diabetes before 10 years of age. Med. J. Aust. 2020, 212, 95–95.e1. [Google Scholar] [CrossRef]
- Cioana, M.; Deng, J.; Nadarajah, A.; Hou, M.; Qiu, Y.; Chen, S.S.J.; Rivas, A.; Toor, P.P.; Banfield, L.; Thabane, L.; et al. Global Prevalence of Diabetic Retinopathy in Pediatric Type 2 Diabetes: A Systematic Review and Meta-analysis. JAMA Netw. Open 2023, 6, e231887. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, M.; Divers, J.; Dabelea, D.; Isom, S.; Bell, R.A.; Martin, C.L.; Pettitt, D.J.; Saydah, S.; Pihoker, C.; Standiford, D.A.; et al. Prevalence of and Risk Factors for Diabetic Peripheral Neuropathy in Youth with Type 1 and Type 2 Diabetes: SEARCH for Diabetes in Youth Study. Diabetes Care 2017, 40, 1226–1232. [Google Scholar] [CrossRef]
- Cooper, F.; Carakushansky, M.; Johnson, C.M.; Gurnurkar, S. Deep Vein Thrombosis as the Presenting Sign in an Adolescent with New-Onset Type 2 Diabetes. JCEM Case Rep. 2024, 2, luae038. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, J.; Cheng, P.; Ruedy, K.J.; Kollman, C.; Beck, R.W.; Klingensmith, G.J.; Wood, J.R.; Willi, S.; Bacha, F.; Lee, J.; et al. Depressive Symptoms in Youth with Type 1 or Type 2 Diabetes: Results of the Pediatric Diabetes Consortium Screening Assessment of Depression in Diabetes Study. Diabetes Care 2015, 38, 2341–2343. [Google Scholar] [CrossRef] [PubMed]
- Meehan, C.; Silverstein, J. Treatment Options for Type 2 Diabetes in Youth Remain Limited. J. Pediatr. 2016, 170, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Novotny, R.; Davis, J.; Butel, J.; Boushey, C.J.; Fialkowski, M.K.; Nigg, C.R.; Braun, K.L.; Guerrero, R.T.; Coleman, P.; Bersamin, A.; et al. Effect of the Children’s Healthy Living Program on Young Child Overweight, Obesity, and Acanthosis Nigricans in the US-Affiliated Pacific Region: A Randomized Clinical Trial. JAMA Netw. Open 2018, 1, e183896. [Google Scholar] [CrossRef]
- Pike, J.M.; Haberlin-Pittz, K.M.; Alharbi, B.S.; Perkins, S.M.; Hannon, T.S. A co-designed, community-based intensive health behavior intervention promotes participation and engagement in youth with risk factors for type 2 diabetes. Front. Clin. Diabetes Healthc. 2023, 4, 1264312. [Google Scholar] [CrossRef]
- Soltero, E.G.; Olson, M.L.; Williams, A.N.; Konopken, Y.P.; Castro, F.G.; Arcoleo, K.J.; Keller, C.S.; Patrick, D.L.; Ayers, S.L.; Barraza, E.; et al. Effects of a Community-Based Diabetes Prevention Program for Latino Youth with Obesity: A Randomized Controlled Trial. Obesity 2018, 26, 1856–1865. [Google Scholar] [CrossRef]
- Manios, Y.; Androutsos, O.; Lambrinou, C.P.; Cardon, G.; Lindstrom, J.; Annemans, L.; Mateo-Gallego, R.; de Sabata, M.S.; Iotova, V.; Kivela, J.; et al. A school- and community-based intervention to promote healthy lifestyle and prevent type 2 diabetes in vulnerable families across Europe: Design and implementation of the Feel4Diabetes-study. Public Health Nutr. 2018, 21, 3281–3290. [Google Scholar] [CrossRef]
- Cardon, G.; Chastin, S.; Van Stappen, V.; Huys, N.; Stefanova, T.; Chakarova, N.; Kivelä, J.; Alberto Moreno, L.; Sándor Istvánné, R.; Androutsos, O.; et al. The Feel4Diabetes intervention: Effectiveness on 24-hour physical behaviour composition in families at risk for diabetes development. Health Promot. Int. 2022, 37, daac092. [Google Scholar] [CrossRef]
- Van Stappen, V.; Latomme, J.; Cardon, G.; De Bourdeaudhuij, I.; Lateva, M.; Chakarova, N.; Kivelä, J.; Lindström, J.; Androutsos, O.; González-Gil, E.; et al. Barriers from Multiple Perspectives Towards Physical Activity, Sedentary Behaviour, Physical Activity and Dietary Habits When Living in Low Socio-Economic Areas in Europe. The Feel4Diabetes Study. Int. J. Environ. Res. Public Health 2018, 15, 2840. [Google Scholar] [CrossRef]
- Kriska, A.; El Ghormli, L.; Copeland, K.C.; Higgins, J.; Ievers-Landis, C.E.; Levitt Katz, L.E.; Trief, P.M.; Wauters, A.D.; Yasuda, P.M.; Delahanty, L.M.; et al. Impact of lifestyle behavior change on glycemic control in youth with type 2 diabetes. Pediatr. Diabetes 2018, 19, 36–44. [Google Scholar] [CrossRef]
- Berkowitz, R.I.; Marcus, M.D.; Anderson, B.J.; Delahanty, L.; Grover, N.; Kriska, A.; Laffel, L.; Syme, A.; Venditti, E.; Van Buren, D.J.; et al. Adherence to a lifestyle program for youth with type 2 diabetes and its association with treatment outcome in the TODAY clinical trial. Pediatr. Diabetes 2018, 19, 191–198. [Google Scholar] [CrossRef] [PubMed]
- McGavock, J.; Durksen, A.; Wicklow, B.; Malik, S.; Sellers, E.A.; Blydt-Hansen, T.; Chateau, D.; Dart, A. Determinants of Readiness for Adopting Healthy Lifestyle Behaviors Among Indigenous Adolescents with Type 2 Diabetes in Manitoba, Canada: A Cross-Sectional Study. Obesity 2018, 26, 910–915. [Google Scholar] [CrossRef] [PubMed]
- Ievers-Landis, C.E.; Walders-Abramson, N.; Amodei, N.; Drews, K.L.; Kaplan, J.; Levitt Katz, L.E.; Lavietes, S.; Saletsky, R.; Seidman, D.; Yasuda, P. Longitudinal Correlates of Health Risk Behaviors in Children and Adolescents with Type 2 Diabetes. J. Pediatr. 2015, 166, 1258–1264.e3. [Google Scholar] [CrossRef]
- Huynh, E.; Rand, D.; McNeill, C.; Brown, S.; Senechal, M.; Wicklow, B.; Dart, A.; Sellers, E.; Dean, H.; Blydt-Hansen, T.; et al. Beating Diabetes Together: A Mixed-Methods Analysis of a Feasibility Study of Intensive Lifestyle Intervention for Youth with Type 2 Diabetes. Can. J. Diabetes 2015, 39, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.A.; Erickson, E.; McKee, P.; Schrankler, K.; Raatz, S.K.; Lytle, L.A.; Pellegrini, A.D. Breakfast frequency and quality may affect glycemia and appetite in adults and children. J. Nutr. 2011, 141, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Gow, M.L.; Garnett, S.P.; Baur, L.A.; Lister, N.B. The Effectiveness of Different Diet Strategies to Reduce Type 2 Diabetes Risk in Youth. Nutrients 2016, 8, 486. [Google Scholar] [CrossRef]
- Diederichs, T.; Herder, C.; Roßbach, S.; Roden, M.; Wudy, S.A.; Nöthlings, U.; Alexy, U.; Buyken, A.E. Carbohydrates from Sources with a Higher Glycemic Index during Adolescence: Is Evening Rather than Morning Intake Relevant for Risk Markers of Type 2 Diabetes in Young Adulthood? Nutrients 2017, 9, 591. [Google Scholar] [CrossRef]
- Hegedus, E.; Vu, M.H.; Salvy, S.J.; Bakhsh, J.; Goran, M.I.; Raymond, J.K.; Espinoza, J.C.; Vidmar, A.P. Randomized Controlled Feasibility Trial of Late 8-Hour Time-Restricted Eating for Adolescents with Type 2 Diabetes. J. Acad. Nutr. Diet. 2024, 124, 1014–1028. [Google Scholar] [CrossRef]
- Stagi, S.; Lapi, E.; Seminara, S.; Pelosi, P.; Del Greco, P.; Capirchio, L.; Strano, M.; Giglio, S.; Chiarelli, F.; de Martino, M. Policaptil Gel Retard significantly reduces body mass index and hyperinsulinism and may decrease the risk of type 2 diabetes mellitus (T2DM) in obese children and adolescents with family history of obesity and T2DM. Ital. J. Pediatr. 2015, 41, 10. [Google Scholar] [CrossRef]
- Zhu, L.; Li, S.; Zhong, L.; Xu, S.; Zhu, H. Optimal vitamin D supplement dosage for improving insulin resistance in children and adolescents with overweight/obesity: A systematic review and network meta-analysis. Eur. J. Nutr. 2024, 63, 763–775. [Google Scholar] [CrossRef]
- Calcaterra, V.; Magenes, V.C.; Bianchi, A.; Rossi, V.; Gatti, A.; Marin, L.; Vandoni, M.; Zuccotti, G. How Can Promoting Skeletal Muscle Health and Exercise in Children and Adolescents Prevent Insulin Resistance and Type 2 Diabetes? Life 2024, 14, 1198. [Google Scholar] [CrossRef]
- Sénéchal, M.; Rempel, M.; Duhamel, T.A.; MacIntosh, A.C.; Hay, J.; Wicklow, B.; Wittmeier, K.; Shen, G.X.; McGavock, J.M. Fitness is a determinant of the metabolic response to endurance training in adolescents at risk of type 2 diabetes mellitus. Obesity 2015, 23, 823–832. [Google Scholar] [CrossRef]
- Lee, S.S.; Yoo, J.H.; So, Y.S. Effect of the low- versus high-intensity exercise training on endoplasmic reticulum stress and GLP-1 in adolescents with type 2 diabetes mellitus. J. Phys. Ther. Sci. 2015, 27, 3063–3068. [Google Scholar] [CrossRef]
- Colip, L.; Burge, M.R.; Sandy, P.; Ghahate, D.; Bobelu, J.; Faber, T.; Shah, V. Exercise Intervention Improves the Metabolic Profile and Body Composition of Southwestern American Indian Adolescents. J. Diabetes Obes. 2016, 3, 10-15436. [Google Scholar]
- Herbst, A.; Kapellen, T.; Schober, E.; Graf, C.; Meissner, T.; Holl, R.W.; DPV-Science-Initiative. Impact of regular physical activity on blood glucose control and cardiovascular risk factors in adolescents with type 2 diabetes mellitus—A multicenter study of 578 patients from 225 centres. Pediatr. Diabetes 2015, 16, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.J.; D’Angiulli, A.; Cameron, J.D.; Sigal, R.J.; Kenny, G.P.; Holcik, M.; Doucette, S.; Alberga, A.S.; Prud’hOmme, D.; Hadjiyannakis, S.; et al. Changes in the Brain-Derived Neurotrophic Factor Are Associated with Improvements in Diabetes Risk Factors after Exercise Training in Adolescents with Obesity: The HEARTY Randomized Controlled Trial. Neural Plast. 2018, 2018, 7169583. [Google Scholar] [CrossRef]
- Bacha, F.; Gidding, S.S.; Pyle, L.; Levitt Katz, L.; Kriska, A.; Nadeau, K.J.; Lima, J.A. Relationship of Cardiac Structure and Function to Cardiorespiratory Fitness and Lean Body Mass in Adolescents and Young Adults with Type 2 Diabetes. J. Pediatr. 2016, 177, 159–166.e1. [Google Scholar] [CrossRef] [PubMed]
- Naylor, L.H.; Davis, E.A.; Kalic, R.J.; Paramalingam, N.; Abraham, M.B.; Jones, T.W.; Green, D.J. Exercise training improves vascular function in adolescents with type 2 diabetes. Physiol. Rep. 2016, 4, e12713. [Google Scholar] [CrossRef] [PubMed]
- Chobot, A.; Piona, C.; Bombaci, B.; Kamińska-Jackowiak, O.; Mancioppi, V.; Passanisi, S. Exploring the Continuous Glucose Monitoring in Pediatric Diabetes: Current Practices, Innovative Metrics, and Future Implications. Children 2024, 11, 907. [Google Scholar] [CrossRef]
- Gonzalez, A.R.; Harrison, C.; Hewitt, B.; Mejier, J.L.; Vajravelu, M.E. Feasibility, Acceptability, and Validity of Home Continuous Glucose Monitoring-Based Oral Glucose Tolerance Test in Youth. J. Clin. Endocrinol. Metab. 2024, 110, e2510–e2516. [Google Scholar] [CrossRef]
- Chang, N.; Barber, R.O.L.B.; Llovido Alula, J.; Durazo-Arvizu, R.; Chao, L.C. Continuous Glucose Monitoring versus Standard of Care in Adolescents with Type 2 Diabetes: A Pilot Randomized Cross-Over Trial. J. Diabetes Sci. Technol. 2023, 17, 1419–1420. [Google Scholar] [CrossRef]
- Chesser, H.; Srinivasan, S.; Puckett, C.; Gitelman, S.E.; Wong, J.C. Real-Time Continuous Glucose Monitoring in Adolescents and Young Adults with Type 2 Diabetes Can Improve Quality of Life. J. Diabetes Sci. Technol. 2024, 18, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Manfredo, J.; Lin, T.; Gupta, R.; Abiola, K.; West, M.; Busin, K.; Tracey, J.; Brown, E.A.; Magge, S.N.; Wolf, R.M. Short-term use of CGM in youth onset type 2 diabetes is associated with behavioral modifications. Front. Endocrinol. 2023, 14, 1182260. [Google Scholar] [CrossRef] [PubMed]
- Alfaraidi, H.; Samaan, M.C. Metformin therapy in pediatric type 2 diabetes mellitus and its comorbidities: A review. Front. Endocrinol. 2022, 13, 1072879. [Google Scholar] [CrossRef]
- Pinto, C.A.; Stafford, J.M.; Wang, T.; Shankar, R.R.; Lawrence, J.M.; Kim, G.; Pihoker, C.; D’Agostino, R.B., Jr.; Dabelea, D. Changes in diabetes medication regimens and glycemic control in adolescents and young adults with youth-onset type 2 diabetes: The SEARCH for diabetes in youth study. Pediatr. Diabetes 2018, 19, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Kelsey, M.M.; Geffner, M.E.; Guandalini, C.; Pyle, L.; Tamborlane, W.V.; Zeitler, P.S.; White, N.H.; Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) Study Group. Presentation and effectiveness of early treatment of type 2 diabetes in youth: Lessons from the TODAY study. Pediatr. Diabetes 2016, 17, 212–221. [Google Scholar] [CrossRef]
- Bielinski, S.J.; Yanes Cardozo, L.L.; Takahashi, P.Y.; Larson, N.B.; Castillo, A.; Podwika, A.; De Filippis, E.; Hernandez, V.; Mahajan, G.J.; Gonzalez, C.; et al. Predictors of Metformin Failure: Repurposing Electronic Health Record Data to Identify High-Risk Patients. J. Clin. Endocrinol. Metab. 2023, 108, 1740–1746. [Google Scholar] [CrossRef]
- Bacha, F.; Cheng, P.; Gal, R.L.; Kollman, C.; Tamborlane, W.V.; Klingensmith, G.J.; Manseau, K.; Wood, J.; Beck, R.W.; Pediatric Diabetes Consortium. Initial Presentation of Type 2 Diabetes in Adolescents Predicts Durability of Successful Treatment with Metformin Monotherapy: Insights from the Pediatric Diabetes Consortium T2D Registry. Horm. Res. Paediatr. 2018, 89, 47–55. [Google Scholar] [CrossRef]
- Zeitler, P.; Hirst, K.; Copeland, K.C.; El Ghormli, L.; Levitt Katz, L.; Levitsky, L.L.; Linder, B.; McGuigan, P.; White, N.H.; Wilfley, D.; et al. HbA1c After a Short Period of Monotherapy with Metformin Identifies Durable Glycemic Control Among Adolescents with Type 2 Diabetes. Diabetes Care 2015, 38, 2285–2292. [Google Scholar] [CrossRef]
- Venditti, E.M.; Tan, K.; Chang, N.; Laffel, L.; McGinley, G.; Miranda, N.; Tryggestad, J.; Walders-Abramson, N.; Yasuda, P.; Delahanty, L. Barriers and strategies for oral medication adherence among children and adolescents with Type 2 diabetes. Diabetes Res. Clin. Pract. 2018, 139, 24–31. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, M.; Wen, Z.; Lu, Z.; Cui, L.; Fu, C.; Xue, H.; Liu, Y.; Zhang, Y. GLP-1 Receptor Agonists: Beyond Their Pancreatic Effects. Front. Endocrinol. 2021, 12, 721135. [Google Scholar] [CrossRef]
- Miller, M.G.; Terebuh, P.; Kaelber, D.C.; Xu, R.; Davis, P.B. Characterizing GLP-1 Receptor Agonist Use in Preadolescent and Adolescent Populations. JAMA Netw. Open 2024, 7, e2439887. [Google Scholar] [CrossRef]
- Dai, M.; Dai, S.; Gu, L.; Xiang, Z.; Xu, A.; Lu, S.; Yang, Y.; Zhou, C. Efficacy of Glucagon-like Peptide-1 Receptor Agonists in Overweight/Obese and/or T2DM Adolescents: A Meta-analysis Based on Randomized Controlled Trials. J. Clin. Res. Pediatr. Endocrinol. 2024, 16, 323–333. [Google Scholar] [CrossRef]
- Yugar, L.B.T.; Sedenho-Prado, L.G.; da Silva Ferreira, I.M.C.; Silva, C.A.M.; Sposito, A.C.; Cercato, C. The efficacy and safety of GLP-1 receptor agonists in youth with type 2 diabetes: A meta-analysis. Diabetol. Metab. Syndr. 2024, 16, 92. [Google Scholar] [CrossRef]
- Seo, J.Y.; Lee, C.G.; Choi, H.; Lee, H.K.; Lee, S.Y.; Kim, H.J.; Jung, K.Y.; Kim, J.T. Effects of once-weekly dulaglutide on juvenile type 2 diabetes mellitus and obesity in Korea: A pilot study. Ann. Pediatr. Endocrinol. Metab. 2023, 28, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.C.; Tendal, B.; Mustafa, R.A.; Vandvik, P.O.; Li, S.; Hao, Q.; Tunnicliffe, D.; Ruospo, M.; Natale, P.; Saglimbene, V.; et al. Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: Systematic review and network meta-analysis of randomised controlled trials. BMJ 2021, 372, m4573. [Google Scholar] [CrossRef] [PubMed]
- Grube, P.M.; Beckett, R.D. Clinical studies of dapagliflozin in pediatric patients: A rapid review. Ann. Pediatr. Endocrinol. Metab. 2022, 27, 265–272. [Google Scholar] [CrossRef]
- Tirucherai, G.S.; LaCreta, F.; Ismat, F.A.; Tang, W.; Boulton, D.W. Pharmacokinetics and pharmacodynamics of dapagliflozin in children and adolescents with type 2 diabetes mellitus. Diabetes Obes. Metab. 2016, 18, 678–684. [Google Scholar] [CrossRef]
- Shehadeh, N.; Barrett, T.; Galassetti, P.; Karlsson, C.; Monyak, J.; Iqbal, N.; Tamborlane, W.V. Dapagliflozin or Saxagliptin in Pediatric Type 2 Diabetes. NEJM Evid. 2023, 2, EVIDoa2300210. [Google Scholar] [CrossRef] [PubMed]
- Shehadeh, N.; Galassetti, P.; Iqbal, N.; Karlsson, C.; Monyak, J.; Ostridge, J.; Bolin, M.; Barrett, T. Safety, Growth, and Development After Dapagliflozin or Saxagliptin in Children with Type 2 Diabetes (T2NOW Follow-Up). J. Clin. Endocrinol. Metab. 2025, 110, 1587–1595. [Google Scholar] [CrossRef]
- Tamborlane, W.V.; Polidori, D.; Argenti, D.; Di Prospero, N.A. Pharmacokinetics and pharmacodynamics of canagliflozin in pediatric patients with type 2 diabetes. Pediatr. Diabetes 2018, 19, 649–655. [Google Scholar] [CrossRef]
- Tamborlane, W.V.; Laffel, L.M.; Weill, J.; Gordat, M.; Neubacher, D.; Retlich, S.; Hettema, W.; Hoesl, C.E.; Kaspers, S.; Marquard, J. Randomized, double-blind, placebo-controlled dose-finding study of the dipeptidyl peptidase-4 inhibitor linagliptin in pediatric patients with type 2 diabetes. Pediatr. Diabetes 2018, 19, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Fraser, I.P.; Neufeld, N.D.; Fox, L.A.; Kipnes, M.S.; Miller, T.L.; Zeitler, P.S.; Rodriguez, H.; Gilmartin, J.H.; Lee, S.J.; Patterson, J.K.; et al. A randomized clinical trial to evaluate the single-dose pharmacokinetics, pharmacodynamics, and safety of sitagliptin in pediatric patients with type 2 diabetes. Pediatr. Diabetes 2019, 20, 48–56. [Google Scholar] [CrossRef] [PubMed]
- RISE Consortium. Impact of Insulin and Metformin Versus Metformin Alone on β-Cell Function in Youth with Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes. Diabetes Care 2018, 41, 1717–1725. [Google Scholar] [CrossRef]
- Shahid, M.; Shaibi, G.Q.; Baines, H.; Garcia-Filion, P.; Gonzalez-Garcia, Z.; Olson, M. Risk of hypoglycemia in youth with type 2 diabetes on insulin. J. Pediatr. Endocrinol. Metab. 2018, 31, 625–630. [Google Scholar] [CrossRef]
- Bally, L.; Thabit, H.; Hartnell, S.; Andereggen, E.; Ruan, Y.; Wilinska, M.E.; Evans, M.L.; Wertli, M.M.; Coll, A.P.; Stettler, C.; et al. Closed-Loop Insulin Delivery for Glycemic Control in Noncritical Care. N. Engl. J. Med. 2018, 379, 547–556. [Google Scholar] [CrossRef]
- Shah, A.S.; D’Alessio, D.; Ford-Adams, M.E.; Desai, A.P.; Inge, T.H. Bariatric Surgery: A Potential Treatment for Type 2 Diabetes in Youth. Diabetes Care 2016, 39, 934–940. [Google Scholar] [CrossRef]
- Beamish, A.J. Bariatric surgery for obese adolescents to prevent type 2 diabetes. BMJ 2016, 353, i2977. [Google Scholar] [CrossRef]
- Inge, T.H.; Laffel, L.M.; Jenkins, T.M.; Marcus, M.D.; Leibel, N.I.; Brandt, M.L.; Haymond, M.; Urbina, E.M.; Dolan, L.M.; Zeitler, P.S. Comparison of Surgical and Medical Therapy for Type 2 Diabetes in Severely Obese Adolescents. JAMA Pediatr. 2018, 172, 452–460. [Google Scholar] [CrossRef]
- Asiri, A.; Alzahrani, F.; Alghamdi, H.; Alamri, Z. Effect of Laparoscopic Sleeve Gastrectomy on HbA1C Level in Children with Type 2 Diabetes Mellitus. Medicina 2022, 58, 959. [Google Scholar] [CrossRef] [PubMed]
- Carbajo, M.A.; Gonzalez-Ramirez, G.; Jimenez, J.M.; Luque-de-Leon, E.; Ortiz-de-Solorzano, J.; Castro, M.J.; Luque-De-Leon, E.; Ortiz-De-Solorzano, J.; Castro, M.J.; Ruiz-Tovar, J. A 5-Year Follow-up in Children and Adolescents Undergoing One-Anastomosis Gastric Bypass (OAGB) at a European IFSO Excellence Center (EAC-BS). Obes. Surg. 2019, 29, 2739–2744. [Google Scholar] [CrossRef]
Ref. | Country/Region | Years of Data | Study Design | Age Range | Key Findings |
---|---|---|---|---|---|
[21] | USA (SEARCH) | 2001–2017 | Population-based surveillance | 10–19 y | Prevalence nearly doubled from 0.34 to 0.67 per 1000; relative increase 95%. Highest rates in Black (0.85/1000) and Hispanic (0.57/1000) youth. |
[22] | USA (SEARCH) | 2002–2015 | Population-based surveillance | <20 y | Incidence of youth-onset T2D increased significantly across sex and race/ethnicity groups. |
[23] | England | 2012–2017 | National registry | <40 y | 122,780 cases <40 y (4.6% of all T2D); 0.5% <16 y, 0.7% 16–18 y. Younger individuals more often female, obese, socioeconomically disadvantaged, and from minority backgrounds. |
[20] | India | 2016–2018 | National survey | 10–19 y | Prevalence of prediabetes/diabetes: 12.3% in males, 8.4% in females. Higher prevalence in disadvantaged adolescent females. |
[24] | USA (TODAY) | 2004–2009 | Multicenter RCT baseline cohort | 10–17 y | 704 participants, mean age 14 y, 65% female. Predominantly minority groups; 41% household income < $25,000. |
[25] | Germany (North Rhine–Westphalia) | 2002–2022 | Regional registry | <20 y | Incidence increased from 1.3 to 2.8 per 100,000 person-years; annual percent change ~6.4%. |
[26] | Mexico (Mexico City) | 2013 vs. 2018 | Single-center retrospective | 8–17 y | Proportion of pediatric diabetes due to T2D rose from 20.2% to 33.0% over 5 years. |
[27] | Saudi Arabia | 2017–2020 | National registry | <18 y | Among 2344 children and adolescents with diabetes, 6.4% had T2D |
[28] | UK (London) | 2008–2018 | Single-center retrospective cohort | <18 y | Annual incidence of pediatric T2D doubled: from 2.6 (2008–2013) to 5.4 cases/year (2014–2018). |
[29] | Israel | 2008–2019 | National observational study | 10–18 y | Incidence rose from 0.63 to 3.41 per 100,000 |
[30] | Canada (Manitoba) | 2009–2018 | Population-based administrative data | <18 y | Incidence doubled from 16.0 to 31.1 per 100,000. Prevalence rose from 66.4 to 124.2 per 100,000. First Nations children most affected (incidence up to 121.2/100,000). |
|
Diagnostic Test | Prediabetes | Diabetes |
---|---|---|
HbA1c | 5.7–6.4% | ≥6.5% |
Fasting plasma glucose | Impaired Fasting Glucose 100–125 mg/dL | ≥126 mg/dL |
2-h OGTT | Impaired Glucose Tolerance 140–199 mg/dL | ≥200 mg/dL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bombaci, B.; Passanisi, S.; Torre, A.; Sbilordo, S.; Inì, E.; Papa, M.; Valenzise, M.; Lombardo, F.; Salzano, G. Youth-Onset Type 2 Diabetes: Update on Epidemiology, Pathophysiology, Diagnosis, and Management Strategies. Diabetology 2025, 6, 90. https://doi.org/10.3390/diabetology6090090
Bombaci B, Passanisi S, Torre A, Sbilordo S, Inì E, Papa M, Valenzise M, Lombardo F, Salzano G. Youth-Onset Type 2 Diabetes: Update on Epidemiology, Pathophysiology, Diagnosis, and Management Strategies. Diabetology. 2025; 6(9):90. https://doi.org/10.3390/diabetology6090090
Chicago/Turabian StyleBombaci, Bruno, Stefano Passanisi, Arianna Torre, Serena Sbilordo, Eleonora Inì, Mattia Papa, Mariella Valenzise, Fortunato Lombardo, and Giuseppina Salzano. 2025. "Youth-Onset Type 2 Diabetes: Update on Epidemiology, Pathophysiology, Diagnosis, and Management Strategies" Diabetology 6, no. 9: 90. https://doi.org/10.3390/diabetology6090090
APA StyleBombaci, B., Passanisi, S., Torre, A., Sbilordo, S., Inì, E., Papa, M., Valenzise, M., Lombardo, F., & Salzano, G. (2025). Youth-Onset Type 2 Diabetes: Update on Epidemiology, Pathophysiology, Diagnosis, and Management Strategies. Diabetology, 6(9), 90. https://doi.org/10.3390/diabetology6090090