Self-Reported Physical Activity Among Individuals with Diabetes Mellitus in Germany—Identifying Potential Barriers and Facilitators
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Ethical Approval
2.3. Survey
2.4. Statistics
3. Results
3.1. Knowledge of ADA’s Physical Activity Recommendations
3.2. Attitudes Toward Physical Activity
3.3. Adherence to ADA’s Physical Activity Recommendations
3.3.1. Self-Reported Engagement in Endurance Training
3.3.2. Self-Reported Engagement in Strength Training
3.4. Sports Diary
3.5. Changes in Physical Activity Level Since DM Diagnosis
3.6. Influence of Sociodemographic, Health-Related and Behavioral Factors on Calculated MET-Minutes per Week
3.7. Barriers to and Facilitators of Physical Activity
4. Discussion
4.1. Self-Reported Physical Activity
4.2. Self-Reported Engagement in Endurance and Strength Training
4.3. Barriers and Facilitators
4.4. Knowledge Versus Behavior and Implications for Practice
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADA | American Diabetes Association |
DDG | German Diabetes Association |
DIGA | Digital health application |
DM | Diabetes mellitus |
IPAQ | International Physical Activity Questionnaire |
LME | Linear mixed-effects |
MET | Metabolic equivalent of task |
REML | Restricted maximum likelihood |
T1DM | Type 1 diabetes mellitus |
T2DM | Type 2 diabetes mellitus |
WHO | World Health Organization |
References
- Zhou, B.; Rayner, A.W.; Gregg, E.W.; Sheffer, K.E.; Carillo-Larco, R.M.; Bennett, J.E.; Shaw, J.E.; Paciorek, C.J.; Singleton, R.K.; Barradas Pires, A.; et al. Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: A pooled analysis of 1108 population- representative studies with 141 million participants. Lancet 2024, 404, 2077–2093. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. IDF Diabetes Atlas, 11th ed.; International Diabetes Federation: Brussels, Belgium, 2025. [Google Scholar]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed]
- Deutsche Diabetes Gesellschaft. Deutscher Gesundheitsbericht Diabetes 2024—Die Bestandsaufnahme; Deutsche Diabetes Gesellschaft: Berlin, Germany, 2023. [Google Scholar]
- Prabhakar, P.K. Pathophysiology of secondary complications of diabetes mellitus. Asian J. Pharm. Clin. Res. 2016, 9, 23–27. [Google Scholar]
- Tomic, D.; Shaw, J.E.; Magliano, D.J. The burden and risks of emerging complications of diabetes mellitus. Nat. Rev. Endocrinol. 2022, 18, 525–539. [Google Scholar] [CrossRef] [PubMed]
- Kiran, S.R.; Sureka, R.K. Prevalence of diabetes mellitus and its associated comorbidities: A population based study. Int. J. Community Med. Public Health 2024, 11, 2085–2090. [Google Scholar] [CrossRef]
- Kähm, K.; Laxy, M.; Schneider, U.; Rogowski, W.H.; Lhachimi, S.K.; Holle, R. Health Care Costs Associated With Incident Complications in Patients With Type 2 Diabetes in Germany. Diabetes Care 2018, 41, 971–978. [Google Scholar] [CrossRef]
- Einarson, T.R.; Acs, A.; Ludwig, C.; Panton, U.H. Economic Burden of Cardiovascular Disease in Type 2 Diabetes: A Systematic Review. Value Health 2018, 21, 881–890. [Google Scholar] [CrossRef]
- Yao, W.Y.; Han, M.G.; De Vito, G.; Fang, H.; Xia, Q.; Chen, Y.; Liu, X.; Wei, Y.; Rothman, R.L.; Xu, W.H. Physical activity and glycemic control status in chinese patients with type 2 diabetes: A secondary analysis of a randomized controlled trial. Int. J. Environ. Res. Public Health 2021, 18, 4292. [Google Scholar] [CrossRef]
- De Cock, D.; Schreurs, L.; Steenackers, N.; Pazmino, S.; Cools, W.; Eykerman, L.; Thiels, H.; Mathieu, C.; Van der Schueren, B. The effect of physical activity on glycaemic control in people with type 1 diabetes mellitus: A systematic literature review and meta-analysis. Diabet. Med. 2024, 41, e15415. [Google Scholar] [CrossRef]
- Sampath Kumar, A.; Maiya, A.G.; Shastry, B.A.; Vaishali, K.; Ravishankar, N.; Hazari, A.; Gundmi, S.; Jadhav, R. Exercise and insulin resistance in type 2 diabetes mellitus: A systematic review and meta-analysis. Ann. Phys. Rehabil. Med. 2019, 62, 98–103. [Google Scholar] [CrossRef]
- Małkowska, P. Positive Effects of Physical Activity on Insulin Signaling. Curr. Issues Mol. Biol. 2024, 46, 5467–5487. [Google Scholar] [CrossRef] [PubMed]
- Tikkanen-Dolenc, H.; Wadén, J.; Forsblom, C.; Harjutsalo, V.; Thorn, L.M.; Saraheimo, M.; Elonen, N.; Rosengård-Bärlund, M.; Gordin, D.; Tikkanen, H.O.; et al. Frequent and intensive physical activity reduces risk of cardiovascular events in type 1 diabetes. Diabetologia 2017, 60, 574–580. [Google Scholar] [CrossRef]
- Schreuder, T.H.A.; Maessen, M.F.H.; Tack, C.J.; Thijssen, D.H.J.; Hopman, M.T.E. Life-long physical activity restores metabolic and cardiovascular function in type 2 diabetes. Eur. J. Appl. Physiol. 2014, 114, 619–627. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lee, R.; Hwang, M.-H.; Hamilton, M.T.; Park, Y. The effects of exercise on vascular endothelial function in type 2 diabetes: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2018, 10, 15. [Google Scholar] [CrossRef]
- Narita, Z.; Inagawa, T.; Stickley, A.; Sugawara, N. Physical activity for diabetes-related depression: A systematic review and meta-analysis. J. Psychiatr. Res. 2019, 113, 100–107. [Google Scholar] [CrossRef]
- Ulambayar, B.; Ghanem, A.S.; Tóth, Á.; Nagy, A.C. Impact of Physical Activity and Dietary Habits on Mental Well-Being in Patients with Diabetes Mellitus. Nutrients 2025, 17, 1042. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Huang, Q.; Zhang, Q.; Li, M.; Wu, Y. The effectiveness of lifestyle interventions for diabetes remission on patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Worldviews Evid.-Based Nurs. 2023, 20, 64–78. [Google Scholar] [CrossRef]
- Iglesies-Grau, J.; Dionne, V.; Bherer, L.; Bouabdallaoui, N.; Aubut, L.; Besnier, F.; Bertholet, J.; Berthiaume, A.; Bisaillon, M.; Gayda, M.; et al. Metabolic Improvements and Remission of Prediabetes and Type 2 Diabetes: Results from a Multidomain Lifestyle Intervention Clinic. Can. J. Diabetes 2023, 47, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Richardson, L.A.; Basu, A.; Chien, L.; Alman, A.C.; Snell-Bergeon, J.K. Longitudinal associations of physical activity with inflammatory markers in US adults with and without type 1 diabetes. Diabetes Res. Clin. Pract. 2023, 206, 110978. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, K.; Zgutka, K.; Tkacz, M.; Tarnowski, M. Physical Activity as a Modern Intervention in the Fight against Obesity-Related Inflammation in Type 2 Diabetes Mellitus and Gestational Diabetes. Antioxidants 2023, 12, 1488. [Google Scholar] [CrossRef]
- Teixeira de Lemos, E.; Oliveira, J.; Pinheiro, J.P.; Reis, F. Regular Physical Exercise as a Strategy to Improve Antioxidant and Anti-Inflammatory Status: Benefits in Type 2 Diabetes Mellitus. Oxid. Med. Cell. Longev. 2012, 2012, 741545. [Google Scholar] [CrossRef]
- Teixeira-Lemos, E.; Nunes, S.; Teixeira, F.; Reis, F. Regular physical exercise training assists in preventing type 2 diabetes development: Focus on its antioxidant and anti-inflammatory properties. Cardiovasc. Diabetol. 2011, 10, 12. [Google Scholar] [CrossRef]
- Weinberg Sibony, R.; Segev, O.; Dor, S.; Raz, I. Overview of oxidative stress and inflammation in diabetes. J. Diabetes 2024, 16, e70014. [Google Scholar] [CrossRef]
- Asano, R.Y. Acute effects of physical exercise in type 2 diabetes: A review. World J. Diabetes 2014, 5, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Munan, M.; Oliveira, C.L.P.; Marcotte-Chénard, A.; Rees, J.L.; Prado, C.M.; Riesco, E.; Boulé, N.G. Acute and Chronic Effects of Exercise on Continuous Glucose Monitoring Outcomes in Type 2 Diabetes: A Meta-Analysis. Front. Endocrinol. 2020, 11, 495. [Google Scholar] [CrossRef] [PubMed]
- Severinsen, M.C.K.; Pedersen, B.K. Muscle–Organ Crosstalk: The Emerging Roles of Myokines. Endocr. Rev. 2020, 41, 594–609. [Google Scholar] [CrossRef]
- Amercian Diabetes Association. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S20–S42. [Google Scholar] [CrossRef] [PubMed]
- Esefeld, K.; Kress, S.; Behrens, M.; Zimmer, P.; Stumvoll, M.; Thurm, U.; Gehr, B.; Halle, M.; Brinkmann, C. Diabetes, sport and exercise. Diabetologie 2024, 20, 379–389. [Google Scholar] [CrossRef]
- Owolabi, E.O.; Ajayi, A.I. Adherence to medication, dietary and physical activity recommendations: Findings from a multicenter cross-sectional study among adults with diabetes in rural South Africa. J. Eval. Clin. Pract. 2024, 30, 1261–1271. [Google Scholar] [CrossRef]
- Finn, M.; Sherlock, M.; Feehan, S.; Guinan, E.M.; Moore, K.B. Adherence to physical activity recommendations and barriers to physical activity participation among adults with type 1 diabetes. Ir. J. Med. Sci. 2022, 191, 1639–1646. [Google Scholar] [CrossRef]
- Mirahmadizadeh, A.; Khorshidsavar, H.; Seif, M.; Sharifi, M.H. Adherence to Medication, Diet and Physical Activity and the Associated Factors Amongst Patients with Type 2 Diabetes. Diabetes Ther. 2020, 11, 479–494. [Google Scholar] [CrossRef] [PubMed]
- Al Ramadhan, B.J.; Alramadan, M.J.; Alhassan, R.E.; Almajed, H.A.; Khamseen, M.A.B.; Billah, B. Adherence to the recommended physical activity duration among Saudis with type 2 diabetes mellitus. J. Fam. Med. Prim. Care 2019, 8, 3668–3677. [Google Scholar] [CrossRef] [PubMed]
- Mendes, R.; Martins, S.; Fernandes, L. Adherence to Medication, Physical Activity and Diet in Older Adults With Diabetes: Its Association With Cognition, Anxiety and Depression. J. Clin. Med. Res. 2019, 11, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Boutefnouchet, L.; Hoque, B.; Sukik, L.; Rahhal, M.O.; Elhadary, M.; Hamdan, A.; Altrmanini, O.; Abuhaweeleh, M.N.; Bawadi, H.; Shraim, M. Level of adherence to physical activity recommendations among adults with type 2 diabetes in Qatar and associated factors: A cross-sectional study. BMC Public Health 2025, 25, 1553. [Google Scholar] [CrossRef]
- Miller, F.; Anderson, M.; Tucker, D.; Vaz, K.; Brown, J.; Anderson-Jackson, L.; McGrowder, D.A. Diabetes: Biopsychosocial Features Affecting Metabolic Control and Treatment Adherence. In Biopsychosocial Perspectives and Practices for Addressing Communicable and Non-Communicable Diseases; Taukeni, S.G., Ed.; IGI Global Scientific Publishing: Hershey, PA, USA, 2020; pp. 106–133. [Google Scholar]
- Kalra, S.; Baruah, M.P.; Sahay, R. Salutogenesis in Type 2 Diabetes Care: A Biopsychosocial Perspective. Indian J. Endocrinol. Metab. 2018, 22, 169–172. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.L.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- de Abreu de Lima, V.; de Menezes Júnior, F.J.; da Rocha Celli, L.; França, S.N.; Cordeiro, G.R.; Mascarenhas, L.P.G.; Leite, N. Effects of resistance training on the glycemic control of people with type 1 diabetes: A systematic review and meta-analysis. Arch. Endocrinol. Metab. 2022, 66, 533–540. [Google Scholar] [CrossRef]
- Wan, Y.; Su, Z. The Impact of Resistance Exercise Training on Glycemic Control Among Adults with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Biol. Res. Nurs. 2024, 26, 597–623. [Google Scholar] [CrossRef]
- Alobaid, A.M.; Zulyniak, M.A.; Ajjan, R.A.; Brož, J.; Hopkins, M.; Campbell, M.D. Barriers to Exercise in Adults With Type 1 Diabetes and Insulin Resistance. Can. J. Diabetes 2023, 47, 503–508. [Google Scholar] [CrossRef]
- Schmidt, S.K.; Hemmestad, L.; Macdonald, C.S.; Langberg, H.; Valentiner, L.S. Motivation and barriers to maintaining lifestyle changes in patients with type 2 diabetes after an intensive lifestyle intervention (The U-TURN trial): A longitudinal qualitative study. Int. J. Environ. Res. Public Health 2020, 17, 7454. [Google Scholar] [CrossRef]
- Vilafranca Cartagena, M.; Tort-Nasarre, G.; Rubinat Arnaldo, E. Barriers and Facilitators for Physical Activity in Adults with Type 2 Diabetes Mellitus: A Scoping Review. Int. J. Environ. Res. Public Health 2021, 18, 5359. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.G.; Pomares, M.L.; Muratore, C.M.; Avila, P.J.; Apoloni, S.B.; Rodríguez, M.; Gonzalez, C.D. Level of physical activity and barriers to exercise in adults with type 2 diabetes. AIMS Public Health 2021, 8, 229–239. [Google Scholar] [CrossRef]
- Amin, M.; Kerr, D.; Atiase, Y.; Yakub, Y.; Driscoll, A. Understanding Physical Activity Behavior in Ghanaian Adults with Type 2 Diabetes: A Qualitative Descriptive Study. J. Funct. Morphol. Kinesiol. 2023, 8, 127. [Google Scholar] [CrossRef]
- Bukhsh, A.; Goh, B.H.; Zimbudzi, E.; Lo, C.; Zoungas, S.; Chan, K.G.; Khan, T.M. Type 2 Diabetes Patients’ Perspectives, Experiences, and Barriers Toward Diabetes-Related Self-Care: A Qualitative Study From Pakistan. Front. Endocrinol. 2020, 11, 534873. [Google Scholar] [CrossRef]
- Bytyci Katanolli, A.; Probst-Hensch, N.; Ann Obas, K.; Gerold, J.; Zahorka, M.; Jerliu, N.; Ramadani, Q.; Fota, N.; Merten, S. Perceived barriers to physical activity behaviour among patients with diabetes and hypertension in Kosovo: A qualitative study. BMC Prim. Care 2022, 23, 257. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. Facilitating Positive Health Behaviors and Well-being to Improve Health Outcomes: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, 77–110. [Google Scholar] [CrossRef]
- Francesconi, C.; Niebauer, J.; Haber, P.; Moser, O.; Weitgasser, R.; Lackinger, C. Lifestyle: Physical activity and training as prevention and therapy of type 2 diabetes mellitus (Update 2023). Wien. Klin. Wochenschr. 2023, 135, 78–83. [Google Scholar] [CrossRef]
- Hsu, H.J.; Chung, D.T.; Lee, L.Y.; Lin, I.P.; Chen, S.C. Beliefs, Benefits and Barriers Associated with Physical Activity: Impact of These Factors on Physical Activity in Patients With Type II Diabetes Mellitus. Clin. Nurs. Res. 2021, 30, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, A.; Narendran, P.; Andrews, R.C.; Daley, A.; Greenfield, S.M. Attitudes and barriers to exercise in adults with a recent diagnosis of type 1 diabetes: A qualitative study of participants in the Exercise for Type 1 Diabetes (EXTOD) study. BMJ Open 2018, 8, e017813. [Google Scholar] [CrossRef]
- Kulzer, B.; Aberle, J.; Haak, T.; Kaltheuner, M.; Kröger, J.; Landgraf, R.; Kellerer, M. Grundlagen des Diabetesmanagements. Diabetol. Und Stoffwechs. 2022, 17, S87–S97. [Google Scholar] [CrossRef]
- Colley, R.C.; Butler, G.; Garriguet, D.; Prince, S.A.; Roberts, K.C. Comparison of self-reported and accelerometer-measured physical activity in Canadian adults. Health Rep. 2018, 29, 3–15. [Google Scholar] [PubMed]
- Pooni, R.; Edgell, H.; Tamim, H.; Kuk, J.L. The association of objectively and subjectively measured physical activity and sedentary time with prediabetes and type 2 diabetes in adults: A cross-sectional study in Framingham Heart Study cohorts. Appl. Physiol. Nutr. Metab. 2022, 47, 1023–1030. [Google Scholar] [CrossRef]
- Jansson, A.K.; Chan, L.X.; Lubans, D.R.; Duncan, M.J.; Plotnikoff, R.C. Effect of resistance training on HbA1c in adults with type 2 diabetes mellitus and the moderating effect of changes in muscular strength: A systematic review and meta-analysis. BMJ Open Diabetes Res. Care 2022, 10, e002595. [Google Scholar] [CrossRef]
- Kanaley, J.A.; Colberg, S.R.; Corcoran, M.H.; Malin, S.K.; Rodriguez, N.R.; Crespo, C.J.; Kirwan, J.P.; Zierath, J.R. Exercise/Physical Activity in Individuals with Type 2 Diabetes from the American College of Sports Medicine: Interpretation and Clinical Significance. Med. Sci. Sports Exerc. 2022, 54, 353–368. [Google Scholar] [CrossRef]
- Xue, H.; Zou, Y.; Zhang, S. Effects of concurrent aerobic and strength training in patients with type 2 diabetes: Bayesian pairwise and dose-response meta-analysis. BMJ Open Diabetes Res. Care 2024, 12, e004400. [Google Scholar] [CrossRef]
- Zhang, J.; Tam, W.W.S.; Hounsri, K.; Kusuyama, J.; Wu, V.X. Effectiveness of Combined Aerobic and Resistance Exercise on Cognition, Metabolic Health, Physical Function, and Health-related Quality of Life in Middle-aged and Older Adults with Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis. Arch. Phys. Med. Rehabil. 2024, 105, 1585–1599. [Google Scholar] [CrossRef]
- Dubey, N.K.; Ningrum, D.N.A.; Dubey, R.; Deng, Y.H.; Li, Y.C.; Wang, P.D.; Wang, J.R.; Syed-Abdul, S.; Deng, W.P. Correlation between diabetes mellitus and knee osteoarthritis: A dry-to-wet lab approach. Int. J. Mol. Sci. 2018, 19, 3021. [Google Scholar] [CrossRef]
- Dinu, M.; Pagliai, G.; Macchi, C.; Sofi, F. Active Commuting and Multiple Health Outcomes: A Systematic Review and Meta-Analysis. Sport. Med. 2019, 49, 437–452. [Google Scholar] [CrossRef] [PubMed]
- Falconer, C.L.; Cooper, A.R.; Flint, E. Patterns and correlates of active commuting in adults with type 2 diabetes: Cross-sectional evidence from UK Biobank. BMJ Open 2017, 7, e017132. [Google Scholar] [CrossRef] [PubMed]
- Meuffels, F.M.; Kempe, H.P.; Becker, U.; Kornmann, M.; Kress, S.; Kreutz, T.; Brinkmann, C. From Zero to Hero: Type 2 Diabetes Mellitus Patients Hike on the Way of St. James—A Feasibility Study with Analyses of Patients’ Quality of Life, Diabetes Distress and Glucose Profile. Int. J. Environ. Res. Public Health 2023, 20, 1417. [Google Scholar] [CrossRef]
- Moghetti, P.; Balducci, S.; Guidetti, L.; Mazzuca, P.; Rossi, E.; Schena, F. Walking for subjects with type 2 diabetes: A systematic review and joint AMD/SID/SISMES evidence-based practical guideline. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1882–1898. [Google Scholar] [CrossRef]
- Cavalli, N.P.; de Mello, M.B.; Righi, N.C.; Schuch, F.B.; Signori, L.U.; da Silva, A.M.V. Effects of high-intensity interval training and its different protocols on lipid profile and glycaemic control in type 2 diabetes: A meta-analysis. J. Sports Sci. 2024, 42, 333–349. [Google Scholar] [CrossRef] [PubMed]
- Lazić, A.; Stanković, D.; Trajković, N.; Cadenas-Sanchez, C. Effects of HIIT Interventions on Cardiorespiratory Fitness and Glycemic Parameters in Adults with Type 1 Diabetes: A Systematic Review and Meta-Analysis. Sport. Med. 2024, 54, 2645–2661. [Google Scholar] [CrossRef]
- Akinci, B.; Yeldan, I.; Satman, I.; Dirican, A.; Ozdincler, A.R. The effects of Internet-based exercise compared with supervised group exercise in people with type 2 diabetes: A randomized controlled study. Clin. Rehabil. 2018, 32, 799–810. [Google Scholar] [CrossRef]
- Mustapa, A.; Justine, M.; Latir, A.A.; Manaf, H. Home-Based Physical Activity in Patients With Type 2 Diabetes Mellitus: A Scoping Review. Ann. Rehabil. Med. 2021, 45, 345–358. [Google Scholar] [CrossRef]
- Scott, S.N.; Shepherd, S.O.; Strauss, J.A.; Wagenmakers, A.J.M.; Cocks, M. Home-based high-intensity interval training reduces barriers to exercise in people with type 1 diabetes. Exp. Physiol. 2020, 105, 571–578. [Google Scholar] [CrossRef]
- Pan, B.; Long, G.; Yang-qin, C.; Ya-jing, C.; Cai-yun, G.; Xue, H.; Li-qian, Z.; Shan, H.; Ke-hu, Y.; Ding, G.; et al. Exercise training modalities in patients with type 2 diabetes mellitus: A systematic review and network meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 72. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.A.; de Arruda Martins, M.; Carvalho, C.R.F. The role of physician counseling in improving adherence to physical activity among the general population. Sao Paulo Med. J. 2007, 152, 115–121. [Google Scholar] [CrossRef]
- Woodhead, G.; Sivaramakrishnan, D.; Baker, G. Promoting physical activity to patients: A scoping review of the perceptions of doctors in the United Kingdom. Syst. Rev. 2023, 12, 104. [Google Scholar] [CrossRef] [PubMed]
- Ferrand, C.; Perrin, C.; Nasarre, S. Motives for regular physical activity in women and men: A qualitative study in French adults with type 2 diabetes, belonging to a patients’ association. Health Soc. Care Community 2008, 16, 511–520. [Google Scholar] [CrossRef]
- Miquelon, P.; Castonguay, A. Motives for Participation in Physical Activity and Observance of Physical Activity Recommendations among Adults with Type 2 Diabetes. Can. J. Diabetes 2016, 40, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Palmer, K.; Robbins, L.B.; Ling, J.; Kao, T.S.A.; Voskuil, V.R.; Smith, A.L. Adolescent Autonomous Motivation for Physical Activity: A Concept Analysis. J. Pediatr. Nurs. 2020, 54, e36–e46. [Google Scholar] [CrossRef] [PubMed]
- Madigan, C.D.; Grimmett, C.; Sweet, S.N.; Daley, A.J.; Kettle, V.E.; Phillips, B.; Graham, H.E. Understanding Adult’s Experiences and Perceptions of How to Maintain Physical Activity: A Systematic Review and Qualitative Synthesis. Int. J. Behav. Med. 2024. [Google Scholar] [CrossRef] [PubMed]
Females: 56.2% (n = 190) Males: 42.0% (n = 142) Gender diverse persons: 1.8% (n = 6) | All Participants (n = 338) | Type 1 DM 57.1% (n = 193) | Type 2 DM 42.9% (n = 145) |
Age (years) | |||
18–39 | 24.0% (n = 81) | 38.3% (n = 74) | 4.8% (n = 7) |
40–59 | 35.8% (n = 121) | 37.8% (n = 73) | 33.1% (n = 48) |
60+ | 40.2% (n = 136) | 23.8% (n = 46) | 62.1% (n = 90) |
Education level | |||
No school-leaving certificate | 0.9% (n = 3) | 0 | 2.1% (n = 3) |
Lower secondary school | 5.3% (n = 18) | 3.1% (n = 6) | 8.3% (n = 12) |
Secondary school | 12.8% (n = 43) | 10.0% (n = 19) | 16.6% (n = 24) |
A-level | 7.4% (n = 25) | 7.9% (n = 15) | 6.9% (n = 10) |
Completed vocational training | 33.3% (n = 112) | 35.1% (n = 67) | 31.0% (n = 45) |
Bachelor or Master craftsman | 15.5% (n = 52) | 16.8% (n = 32) | 13.8% (n = 20) |
Master or diploma | 23.5% (n = 79) | 25.7% (n = 49) | 20.7% (n = 30) |
Doctorate | 1.2% (n = 4) | 1.6% (n = 3) | 0.7% (n = 1) |
Living situation | |||
Village (<5000 inhabitants) | 35.2% (n = 119) | 32.6% (n = 63) | 38.6% (n = 56) |
Small town (up to 20,000) | 18.6% (n = 63) | 14.0% (n = 27) | 24.8% (n = 36) |
Urban area (up to 100,000) | 21.0% (n = 71) | 23.3% (n = 45) | 17.9% (n = 26) |
Large city (>100,000) | 25.1% (n = 85) | 30.1% (n = 58) | 18.6% (n = 27) |
Diagnosis (years ago) | |||
<5 years | 20.4% (n = 69) | 17.1% (n = 33) | 24.8% (n = 36) |
5–9 years | 11.2% (n = 38) | 5.2% (n = 10) | 19.3% (n = 28) |
10–14 years | 18.0% (n = 61) | 10.9% (n = 21) | 27.6% (n = 40) |
15–19 years | 11.8% (n = 40) | 11.9% (n = 23) | 11.7% (n = 17) |
>20 years | 38.5% (n = 130) | 54.9% (n = 106) | 16.6% (n = 24) |
Secondary diseases | |||
Yes | 36.6% (n = 123) | 29.2% (n = 56) | 46.5% (n = 67) |
No | 63.4% (n = 213) | 70.8% (n = 136) | 53.5% (n = 77) |
Sources of Information | All Participants (n = 279) | Type 1 DM (n = 168) | Type 2 DM (n = 111) |
---|---|---|---|
Medical practice | 53.8% (n = 150) | 46.4% (n = 78) | 64.9% (n = 72) |
Diabetes education course | 42.7% (n = 119) | 42.9% (n = 72) | 42.3% (n = 47) |
Internet | 24.4% (n = 68) | 26.8% (n = 45) | 20.7% (n = 23) |
Magazines/Journals | 18.3% (n = 51) | 21.4% (n = 36) | 13.5% (n = 15) |
Statements | All Participants | Type 1 DM | Type 2 DM |
---|---|---|---|
Physical activity is part of my diabetes therapy | 43.9% (n = 126/ n = 287) | 42.1% (n = 67/ n = 159) | 46.1% (n = 59/ n = 128) |
Physical activity should be part of my diabetes therapy | 67.1% (n = 192/ n = 286) | 62.9% (n = 100/ n = 159) | 72.4% (n = 92/ n = 127) |
I can positively influence diabetes through physical activity | 78.5% (n = 226/ n = 288) | 73.0% (n = 116/ n = 159) | 85.3% (n = 110/ n = 129) |
I would like to receive more information about physical activity as part of my diabetes treatment | 34.8% (n = 100/ n = 287) | 34.6% (n = 55/ n = 159) | 35.2% (n = 45/ n = 128) |
I am responsible for planning and performing physical activities | 89.6% (n = 258/ n = 288) | 94.3% (n = 150/ n = 159) | 83.7% (n = 108/ n = 129) |
I need qualified support in planning and performing physical activities | 24.4% (n = 70/ n = 287) | 20.1% (n = 32/ n = 159) | 29.7% (n = 38/ n = 128) |
I am willing to finance participation in exercise programs myself | 53.2% (n = 151/ n = 284) | 52.2% (n = 82/ n = 157) | 54.3% (n = 69/ n = 127) |
Recommendations | All Participants | Type 1 DM | Type 2 DM |
---|---|---|---|
Always or mostly met | 58.0% (n = 188) | 60.7% (n = 111) | 54.6% (n = 77) |
Rarely met | 33.0% (n = 107) | 29.5% (n = 54) | 37.6% (n = 53) |
Never met | 5.6% (n = 18) | 7.1% (n = 13) | 3.5% (n = 5) |
I don’t know | 3.4% (n = 11) | 2.7% (n = 5) | 4.3% (n = 6) |
Intensity | All Participants | Type 1 DM | Type 2 DM |
---|---|---|---|
Moderate | 114 ± 139 (n = 278) | 132 ± 159 (n = 152) | 92 ± 107 (n = 126) |
Intense | 42 ± 79 (n = 260) | 52 ± 95 (n = 148) | 29 ± 48 (n = 112) |
Recommendations | All Participants | Type 1 DM | Type 2 DM |
---|---|---|---|
Met | 30.5% (n = 90) | 27.4% (n = 45) | 34.4% (n = 45) |
Not met | 69.5% (n = 205) | 72.6% (n = 119) | 65.6% (n = 86) |
Barriers | All Participants (n = 297) | Type 1 DM (n = 164) | Type 2 DM (n = 133) |
---|---|---|---|
Lack of time | 52.2% (n = 155) | 58.5% (n = 96) | 44.4% (n = 59) |
Lack of motivation | 44.1% (n = 131) | 40.9% (n = 67) | 48.1% (n = 64) |
Lack of fun | 14.5% (n = 43) | 17.1% (n = 28) | 11.3% (n = 15) |
Bad weather | 24.9% (n = 74) | 18.9% (n = 31) | 32.3% (n = 43) |
Financial reasons | 7.7% (n = 23) | 9.1% (n = 15) | 6.0% (n = 8) |
Social circumstances | 12.1% (n = 36) | 11.6% (n = 19) | 12.8% (n = 17) |
Distance to sport facilities | 7.7% (n = 23) | 10.4% (n = 17) | 4.5% (n = 6) |
Advice from physician to not engage in physical activity | 1.3% (n = 4) | 1.8% (n = 3) | 0.8% (n = 1) |
Fear of negative health consequences (e.g., hypoglycemia, injuries) | 13.1% (n = 39) | 19.5% (n = 32) | 5.3% (n = 7) |
DM itself and secondary diseases | 5.1% (n = 15) | 6.7% (n = 11) | 3.0% (n = 4) |
State of health (except diabetes-related issues) | 31.3% (n = 93) | 22.6% (n = 37) | 42.1% (n = 56) |
Facilitators | All Participants (n = 284) | Type 1 DM (n = 158) | Type 2 DM (n = 126) |
---|---|---|---|
Coverage of costs (by health insurance company) | 66.5% (n = 189) | 65.2% (n = 103) | 68.3% (n = 86) |
Integration of physical activity into the workday (activity during breaks, sport during work) | 38.4% (n = 109) | 48.7% (n = 77) | 25.4% (n = 32) |
Advertisements of healthy living | 17.3% (n = 49) | 13.3% (n = 21) | 22.2% (n = 28) |
Availability of exercise programs in close proximity to the patient’s home | 62.3% (n = 177) | 59.5% (n = 94) | 65.9% (n = 83) |
Target group specific exercise program | 51.8% (n = 147) | 53.8% (n = 85) | 49.2% (n = 62) |
Digital services | 15.1% (n = 43) | 17.1% (n = 27) | 12.7% (n = 16) |
Sports | All Participants | Type 1 DM | Type 2 DM |
---|---|---|---|
(Nordic) Walking | 49.0% (n = 124/ n = 253) | 49.3% (n = 68/ n = 138) | 48.7% (n = 56/ n = 115) |
Running | 29.6% (n = 76/ n = 257) | 33.3% (n = 48/ n = 144) | 24.8% (n = 28/ n = 113) |
Hiking | 59.5% (n = 160/ n = 269) | 64.7% (n = 97/ n = 150) | 52.9% (n = 63/ n = 119) |
Cycling | 68.8% (n = 183/ n = 266) | 66.0% (n = 97/ n = 147) | 72.3% (n = 86/ n = 119) |
Swimming | 50.4% (n = 132/ n = 262) | 41.5% (n = 61/ n = 147) | 61.7% (n = 71/ n = 115) |
Dancing | 37.9% (n = 96/ n = 253) | 46.3% (n = 68/ n = 147) | 26.4% (n = 28/ n = 106) |
Cross-country skiing | 20.6% (n = 48/ n = 233) | 26.3% (n = 36/ n = 137) | 12.5% (n = 12/ n = 96) |
Fitness training in the gym | 37.6% (n = 102/ n = 271) | 34.2% (n = 52/ n = 152) | 42.0% (n = 50/ n = 119) |
Yoga/Pilates | 34.7% (n = 86/ n = 248) | 39.2% (n = 56/ n = 143) | 28.6% (n = 30/ n = 105) |
Thai Chi | 21.7% (n = 49/ n = 226) | 19.5% (n = 25/ n = 128) | 24.5% (n = 24/ n = 98) |
Coordination exercises | 39.4% (n = 100/ n = 254) | 39.9% (n = 57/ n = 143) | 38.7% (n = 43/ n = 111) |
Aqua gymnastics | 37.7% (n = 98/ n = 260) | 31.3% (n = 46/ n = 147) | 46.0% (n = 52/ n = 113) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meuffels, F.M.; Lichtmess, C.; Kreutz, T.; Held, S.; Brinkmann, C. Self-Reported Physical Activity Among Individuals with Diabetes Mellitus in Germany—Identifying Potential Barriers and Facilitators. Diabetology 2025, 6, 77. https://doi.org/10.3390/diabetology6080077
Meuffels FM, Lichtmess C, Kreutz T, Held S, Brinkmann C. Self-Reported Physical Activity Among Individuals with Diabetes Mellitus in Germany—Identifying Potential Barriers and Facilitators. Diabetology. 2025; 6(8):77. https://doi.org/10.3390/diabetology6080077
Chicago/Turabian StyleMeuffels, Frederike Maria, Celine Lichtmess, Thorsten Kreutz, Steffen Held, and Christian Brinkmann. 2025. "Self-Reported Physical Activity Among Individuals with Diabetes Mellitus in Germany—Identifying Potential Barriers and Facilitators" Diabetology 6, no. 8: 77. https://doi.org/10.3390/diabetology6080077
APA StyleMeuffels, F. M., Lichtmess, C., Kreutz, T., Held, S., & Brinkmann, C. (2025). Self-Reported Physical Activity Among Individuals with Diabetes Mellitus in Germany—Identifying Potential Barriers and Facilitators. Diabetology, 6(8), 77. https://doi.org/10.3390/diabetology6080077