Culinary Medicine in Type II Diabetes Mellitus Management: A Narrative Review of Randomized Clinical Trials on Dietary Interventions (Nutritional Profiles of Meals and Snacks, Timing, Preparation and Key Considerations)
Abstract
1. Introduction
2. Methods
2.1. Review Aim and Strategy
2.2. Literature Search, Study Selection, Eligibility Criteria and Quality Assessment
2.3. Outcome Measures
3. Results
3.1. Dietary Interventions
3.2. Nutritional Profile
3.2.1. Snacks (Snack Bars, Homemade Cookies, Etc.)
3.2.2. Meals (Pies, Formulas, Etc.)
3.3. Timing
3.4. Preparation
3.5. Missing Points
4. Discussion
- -
- Diabetes and Nutrition Study Group of the European Association for the Study of Diabetes (EASD). European recommendations for the dietary management of diabetes (2023): “Intake of free or added sugars should be less than 10% of total energy intake. Non-nutritive sweeteners can be used to replace sugar in foods and beverages” [87,105].
- -
- Medical Nutrition Therapy Recommendations (2023): “The use of non-nutritive sweeteners to replace sugar-sweetened products may reduce total calorie and carbohydrate intake as long as there is not a compensatory increase in energy intake from other sources. There is evidence that low- and no calorie sweetened beverages are a viable alternative to water” [105].
- -
- Calorie intake: Many low-fat products contain added sugars to enhance flavor, which can lead to increased calorie consumption and, over time, weight gain.
- Satiety: Healthy fats (such as those found in avocados, nuts and olive oil) play a crucial role in reducing hunger pangs and making meals more filling. Without these fats, people can eat too many carbohydrates and proteins.
- Hormonal balance: Dietary fats support hormone production, including leptin, a hormone that regulates appetite and fat storage. A very-low-fat diet can disrupt this balance.
- Insulin sensitivity: When fats are replaced by refined carbohydrates, this can lead to blood sugar spikes and crashes, which promote fat storage rather than fat loss [108].
- -
- Achieve blood pressure and lipid profile targets.
- -
- Ensure adequate energy intake to support healthy weight and metabolic function.
- -
- Treatment of comorbidities such as arterial hypertension, hyperlipidemia, chronic kidney disease, cardiovascular disease and screening for celiac disease.
- -
- Prevention of diabetes complications, both immediate (hyper- and hypoglycemia) and long-term (micro- and macrovascular epilogs).
- -
- Promoting general health through balanced and nutritious food choices.
- -
- Meeting individual nutritional needs, taking into account personal and cultural preferences, encouraging willingness to change and maintaining enjoyment of food without unnecessary restrictions [85].
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boels, A.M.; Rutten, G.; Zuithoff, N.; De Wit, A.; Vos, R. Effectiveness of diabetes self-management education via a smartphone application in insulin treated type 2 diabetes patients–design of a randomised controlled trial (‘TRIGGER study’). BMC Endocr. Disord. 2018, 18, 74. [Google Scholar] [CrossRef] [PubMed]
- Abdul Basith Khan, M.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of type 2 diabetes—Global burden of disease and forecasted trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef]
- Car, J.; Collaborators, G.D. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Moschonis, G.; Grammatikaki, E.; Manios, Y. Perinatal predictors of overweight at infancy and preschool childhood: The GENESIS study. Int. J. Obes. 2008, 32, 39–47. [Google Scholar] [CrossRef]
- Cardon, G.; De Bourdeaudhuij, I.; Iotova, V.; Latomme, J.; Socha, P.; Koletzko, B.; Moreno, L.; Manios, Y.; Androutsos, O.; De Craemer, M. Health related behaviours in normal weight and overweight preschoolers of a large pan-European sample: The ToyBox-study. PLoS ONE 2016, 11, e0150580. [Google Scholar] [CrossRef]
- Moschonis, G.; Siopis, G.; Anastasiou, C.; Iotova, V.; Stefanova, T.; Dimova, R.; Rurik, I.; Radó, A.S.; Cardon, G.; De Craemer, M. Prevalence of childhood obesity by country, family socio-demographics, and parental obesity in Europe: The Feel4Diabetes study. Nutrients 2022, 14, 1830. [Google Scholar] [CrossRef]
- Makrilakis, K.; Kalpourtzi, N.; Ioannidis, I.; Iraklianou, S.; Raptis, A.; Sotiropoulos, A.; Gavana, M.; Vantarakis, A.; Kantzanou, M.; Hadjichristodoulou, C. Prevalence of diabetes and pre-diabetes in Greece. Results of the First National Survey of Morbidity and Risk Factors (EMENO) study. Diabetes Res. Clin. Pract. 2021, 172, 108646. [Google Scholar] [CrossRef]
- Vassou, C.; Georgousopoulou, E.N.; Chrysohoou, C.; Yannakoulia, M.; Pitsavos, C.; Cropley, M.; Panagiotakos, D.B. Irrational beliefs trigger depression and anxiety symptoms, and associated with increased inflammation and oxidative stress markers in the 10-year diabetes mellitus risk: The ATTICA epidemiological study. J. Diabetes Metab. Disord. 2021, 20, 727–739. [Google Scholar] [CrossRef]
- Chen, Y.; Lee, K.; Ni, Z.; He, J.C. Diabetic kidney disease: Challenges, advances, and opportunities. Kidney Dis. 2020, 6, 215–225. [Google Scholar] [CrossRef]
- Hayden, M.R. Overview and new insights into the metabolic syndrome: Risk factors and emerging variables in the development of type 2 diabetes and cerebrocardiovascular disease. Medicina 2023, 59, 561. [Google Scholar] [CrossRef] [PubMed]
- Bugger, H.; Abel, E.D. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 2014, 57, 660–671. [Google Scholar] [CrossRef]
- Tahraoui, A.; Israili, Z.H.; Lyoussi, B. Hypoglycemic and Hypolipidemic Effects of Aqueous Extracts of Ajuga iva and Centaurium erythreae on a Rodent Model of Metabolic Syndrome. Nat. Prod. J. 2017, 7, 47–57. [Google Scholar] [CrossRef]
- Fowler, M.J. Microvascular and macrovascular complications of diabetes. Clin. Diabetes 2011, 29, 116–122. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Banerji, M.; Bray, G.A.; Buchanan, T.A.; Clement, S.; Henry, R.R.; Kitabchi, A.E.; Mudaliar, S.; Musi, N.; Ratner, R. Actos Now for the prevention of diabetes (ACT NOW) study. BMC Endocr. Disord. 2009, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Marwick, T.H.; Ritchie, R.; Shaw, J.E.; Kaye, D. Implications of underlying mechanisms for the recognition and management of diabetic cardiomyopathy. J. Am. Coll. Cardiol. 2018, 71, 339–351. [Google Scholar] [CrossRef]
- Sposito, A.C.; Berwanger, O.; de Carvalho, L.S.F.; Saraiva, J.F.K. Correction to: GLP-1RAs in type 2 diabetes: Mechanisms that underlie cardiovascular effects and overview of cardiovascular outcome data. Cardiovasc. Diabetol. 2019, 18, 157. [Google Scholar] [CrossRef]
- Leon, B.M.; Maddox, T.M. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J. Diabetes 2015, 6, 1246. [Google Scholar] [CrossRef] [PubMed]
- Gortzi, O.; Dimopoulou, M.; Androutsos, O.; Vraka, A.; Gousia, H.; Bargiota, A. Effectiveness of a Nutrition Education Program for Patients with Type 2 Diabetes Mellitus. Appl. Sci. 2024, 14, 2114. [Google Scholar] [CrossRef]
- Yannakoulia, M.; Scarmeas, N. Diets. N. Engl. J. Med. 2024, 390, 2098–2106. [Google Scholar] [CrossRef]
- Alkhatib, A.; Tsang, C.; Tiss, A.; Bahorun, T.; Arefanian, H.; Barake, R.; Khadir, A.; Tuomilehto, J. Functional foods and lifestyle approaches for diabetes prevention and management. Nutrients 2017, 9, 1310. [Google Scholar] [CrossRef]
- DeFronzo, R.A. From the triumvirate to the ominous octet: A new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009, 58, 773–795. [Google Scholar] [CrossRef] [PubMed]
- Garvey, W.T.; Mechanick, J.I.; Einhorn, D. The American Association of Clinical Endocrinologists and the American College of Endocrinology: 2014 advanced framework for a new diagnosis of obesity as a chronic disease. Endocr. Pract. 2014, 20, 977. [Google Scholar] [CrossRef]
- EFSA, E. Dietary reference values for nutrients summary report. EFSA Support. Publ. 2017, 14, e15121E. [Google Scholar] [CrossRef]
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G. Management of hyperglycemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2022, 45, 2753–2786. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Itsiopoulos, C.; Mayr, H.L.; Thomas, C.J. The anti-inflammatory effects of a Mediterranean diet: A review. Curr. Opin. Clin. Nutr. Metab. Care 2022, 25, 415–422. [Google Scholar] [CrossRef]
- Hernáez, Á.; Castañer, O.; Elosua, R.; Pintó, X.; Estruch, R.; Salas-Salvadó, J.; Corella, D.; Arós, F.; Serra-Majem, L.; Fiol, M.; et al. Mediterranean Diet Improves High-Density Lipoprotein Function in High-Cardiovascular-Risk Individuals. Circulation 2017, 135, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Maiorino, M.I.; Bellastella, G.; Petrizzo, M.; Scappaticcio, L.; Giugliano, D.; Esposito, K. Mediterranean diet cools down the inflammatory milieu in type 2 diabetes: The MÉDITA randomized controlled trial. Endocrine 2016, 54, 634–641. [Google Scholar] [CrossRef]
- Shai, I.; Schwarzfuchs, D.; Henkin, Y.; Shahar, D.R.; Witkow, S.; Greenberg, I.; Golan, R.D.; Fraser, D.; Bolotin, A.; Vardi, H.; et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N. Engl. J. Med. 2008, 359, 229–241. [Google Scholar] [CrossRef]
- Kouvari, M.; Chrysohoou, C.; Damigou, E.; Barkas, F.; Kravvariti, E.; Liberopoulos, E.; Tsioufis, C.; Sfikakis, P.P.; Pitsavos, C.; Panagiotakos, D.; et al. Non-invasive tools for liver steatosis and steatohepatitis predict incidence of diabetes, cardiovascular disease and mortality 20 years later: The ATTICA cohort study (2002–2022). Clin. Nutr. 2024, 43, 900–908. [Google Scholar] [CrossRef]
- Bhanpuri, N.H.; Hallberg, S.J.; Williams, P.T.; McKenzie, A.L.; Ballard, K.D.; Campbell, W.W.; McCarter, J.P.; Phinney, S.D.; Volek, J.S. Cardiovascular disease risk factor responses to a type 2 diabetes care model including nutritional ketosis induced by sustained carbohydrate restriction at 1 year: An open label, non-randomized, controlled study. Cardiovasc. Diabetol. 2018, 17, 56. [Google Scholar] [CrossRef]
- Tay, J.; Luscombe-Marsh, N.D.; Thompson, C.H.; Noakes, M.; Buckley, J.D.; Wittert, G.A.; Yancy, W.S., Jr.; Brinkworth, G.D. Comparison of low-and high-carbohydrate diets for type 2 diabetes management: A randomized trial. Am. J. Clin. Nutr. 2015, 102, 780–790. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Huang, W.S.; Ho, M.H.; Chang, C.H.; Lee, L.T.; Chen, H.S.; Kang, Y.-D.; Chie, W.-C.; Jan, C.-F.; Wang, W.-D.; et al. The potential prolonged effect at one-year follow-up after 18-month randomized controlled trial of a 90 g/day low-carbohydrate diet in patients with type 2 diabetes. Nutr. Diabetes 2022, 12, 17. [Google Scholar] [CrossRef] [PubMed]
- Lasa, A.; Miranda, J.; Bulló, M.; Casas, R.; Salas-Salvadó, J.; Larretxi, I.; Estruch, R.; Ruiz-Gutiérrez, V.; Portillo, M.P. Comparative effect of two Mediterranean diets versus a low-fat diet on glycaemic control in individuals with type 2 diabetes. Eur. J. Clin. Nutr. 2014, 68, 767–772. [Google Scholar] [CrossRef]
- Esposito, K.; Maiorino, M.I.; Ciotola, M.; Di Palo, C.; Scognamiglio, P.; Gicchino, M.; Petrizzo, M.; Saccomanno, F.; Beneduce, F.; Ceriello, A.; et al. Effects of a Mediterranean-style diet on the need for antihyperglycemic drug therapy in patients with newly diagnosed type 2 diabetes: A randomized trial. Ann. Intern. Med. 2009, 151, 306–314. [Google Scholar] [CrossRef]
- Kavanagh, M.E.; Back, S.; Chen, V.; Glenn, A.J.; Viscardi, G.; Houshialsadat, Z.; Sievenpiper, J.L.; Kendall, C.W.C.; Jenkins, D.J.A.; Chiavaroli, L. The Portfolio Diet and HbA1c in Adults Living with Type 2 Diabetes Mellitus: A Patient-Level Pooled Analysis of Two Randomized Dietary Trials. Nutrients 2024, 16, 2817. [Google Scholar] [CrossRef]
- Carter, S.; Clifton, P.M.; Keogh, J.B. Effect of intermittent compared with continuous energy restricted diet on glycemic control in patients with type 2 diabetes: A randomized noninferiority trial. JAMA Netw. Open 2018, 1, e180756. [Google Scholar] [CrossRef] [PubMed]
- Krebs, J.D.; Elley, C.R.; Parry-Strong, A.; Lunt, H.; Drury, P.L.; Bell, D.A.; Robinson, E.; Moyes, S.A.; Mann, J.I. The Diabetes Excess Weight Loss (DEWL) Trial: A randomised controlled trial of high-protein versus high-carbohydrate diets over 2 years in type 2 diabetes. Diabetologia 2012, 55, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Barnard, N.D.; Cohen, J.; Jenkins, D.J.; Turner-McGrievy, G.; Gloede, L.; Green, A.; Ferdowsian, H. A low-fat vegan diet and a conventional diabetes diet in the treatment of type 2 diabetes: A randomized, controlled, 74-wk clinical trial. Am. J. Clin. Nutr. 2009, 89, 1588S–1596S. [Google Scholar] [CrossRef]
- Yaikwawong, M.; Jansarikit, L.; Jirawatnotai, S.; Chuengsamarn, S. Curcumin extract improves beta cell functions in obese patients with type 2 diabetes: A randomized controlled trial. Nutr. J. 2024, 23, 119. [Google Scholar] [CrossRef] [PubMed]
- Lean, M.E.; Leslie, W.S.; Barnes, A.C.; Brosnahan, N.; Thom, G.; McCombie, L.; Kelly, Τ.; Irvine, K.; Peters, C.; Zhyzhneuskaya, S.; et al. 5-year follow-up of the randomised Diabetes Remission Clinical Trial (DiRECT) of continued support for weight loss maintenance in the UK: An extension study. Lancet Diabetes Endocrinol. 2024, 12, 233–246. [Google Scholar] [CrossRef]
- Kouvari, M.; Tsiampalis, T.; Damigou, E.; Barkas, F.; Chrysohoou, C.; Kravvariti, E.; Kassanis, Κ.; Dalmyras, D.; Anastasiou, G.; Koutsogianni, A.D.; et al. Investigating the diverse role of ultra-processed foods on cardiometabolic multimorbidity: Highlights from the ATTICA prospective study (2002–2022). Eur. Heart J. 2024, 45 (Suppl. 1), ehae666.2649. [Google Scholar] [CrossRef]
- Balfegó Díaz, M. Diabetis Mellitus Tipus 2: Impacte Metabòlic D’una Dieta Rica en Sardina. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2017. [Google Scholar]
- Nurdin, N.M.; Navratilova, H.F.; Ekawidyani, K.R.; Kurniawan, M.Y. Soy flour snack bars lower glycaemic response in type 2 diabetes mellitus subjects: A randomised cross-over design. Mal. J. Nutr. 2022, 28, 163–175. [Google Scholar] [CrossRef]
- Chaiyakul, S.; Ketkham, N.; Chaichana, C.; Khumkhana, N.; Deekum, W.; Wongshaya, P.; Suwanmalai, T.; Hutchinson, C.; Pramyothin, P. Effects of a novel rice-based diabetes-specific formula on postprandial glucose and gastrointestinal hormones: A double-blinded multi-arm randomized crossover trial. Front. Endocrinol. 2023, 14, 1141497. [Google Scholar] [CrossRef]
- Foshati, S.; Nouripour, F.; Akhlaghi, M. Effect of Date and Raisin Snacks on Glucose Response in Type 2 Diabetes. Nutr. Food Sci. Res. 2015, 2, 19–25. [Google Scholar]
- de Carvalho, C.M.; de Paula, T.P.; Viana, L.V.; Machado, V.M.; de Almeida, J.C.; Azevedo, M.J. Plasma glucose and insulin responses after consumption of breakfasts with different sources of soluble fiber in type 2 diabetes patients: A randomized crossover clinical trial. Am. J. Clin. Nutr. 2017, 106, 1238–1245. [Google Scholar] [CrossRef]
- Mustad, V.A.; Hegazi, R.A.; Hustead, D.S.; Budiman, E.S.; Rueda, R.; Maki, K.; Powers, M.; Mechanick, J.I.; Bergenstal, R.M.; Hamdy, O. Use of a diabetes-specific nutritional shake to replace a daily breakfast and afternoon snack improves glycemic responses assessed by continuous glucose monitoring in people with type 2 diabetes: A randomized clinical pilot study. BMJ Open Diabetes Res. Care 2020, 8, e001258. [Google Scholar] [CrossRef]
- Centofanti, S.; Dorrian, J.; Hilditch, C.; Grant, C.; Coates, A.; Banks, S. Eating on nightshift: A big vs small snack impairs glucose response to breakfast. Neurobiol. Sleep Circadian Rhythm. 2018, 4, 44–48. [Google Scholar] [CrossRef]
- Christiansen, C.B.; Jeppesen, P.B.; Hermansen, K.; Gregersen, S. Aronia in the Type 2 Diabetes Treatment Regimen. Nutrients 2023, 15, 4188. [Google Scholar] [CrossRef]
- Olagunju, A.I.; Arigbede, T.I.; Oyeleye, I.S.; Makanjuola, S.A.; Oyebode, E.T.; Enikuomehin, A.C. High-protein, low glycemic index snack from optimized blend of three wholegrains exhibits nutraceutical quality and elicits low glycemic response in diabetic human subjects. Food Prod. Process. Nut. 2024, 6, 32. [Google Scholar] [CrossRef]
- Bae, J.H.; Kim, L.K.; Min, S.H.; Ahn, C.H.; Cho, Y.M. Postprandial glucose-lowering effect of premeal consumption of protein-enriched, dietary fiber-fortified bar in individuals with type 2 diabetes mellitus or normal glucose tolerance. J. Diabetes Investig. 2018, 9, 1110–1118. [Google Scholar] [CrossRef]
- Nurdin, N.M.; Navratilova, H.F.; Ekawidyani, K.R.; Pratiwi, D.; Kurniawan, M.Y. Soy Flour-Based Snack Bar as Potential Snack Alternative for Diabetes Mellitus. J. Gizi Dan Pangan 2020, 15, 125–132. [Google Scholar] [CrossRef]
- Smith, T.J.; Karl, J.P.; Wilson, M.A.; Whitney, C.C.; Barrett, A.; Farhadi, N.F.; Chen, C.-Y.O.; Montain, S.J. Glycaemic regulation, appetite and ex vivo oxidative stress in young adults following consumption of high-carbohydrate cereal bars fortified with polyphenol-rich berries. Br. J. Nutr. 2019, 121, 1026–1038. [Google Scholar] [CrossRef]
- Yan, M.; Rush, E.; Jackson, R.; Shaikh, S. Snack (re) formulation in the improvement of health effects on glycaemia and satiety responses: Preliminary results. Food Nutr. Sci. 2020, 11, 649–658. [Google Scholar] [CrossRef]
- Gourineni, V.; Stewart, M.L.; Wilcox, M.L.; Maki, K.C. Nutritional bar with potato-based resistant starch attenuated post-prandial glucose and insulin response in healthy adults. Foods 2020, 9, 1679. [Google Scholar] [CrossRef] [PubMed]
- Wolever, T.M.; Van Klinken, B.J.-W.; Bordenave, N.; Kaczmarczyk, M.; Jenkins, A.L.; Chu, Y.; Harkness, L. Reformulating cereal bars: High resistant starch reduces in vitro digestibility but not in vivo glucose or insulin response; whey protein reduces glucose but disproportionately increases insulin. Am. J. Clin. Nutr. 2016, 104, 995–1003. [Google Scholar] [CrossRef]
- Evert, A.B.; Dennison, M.; Gardner, C.D.; Garvey, W.T.; Lau, K.H.K.; MacLeod, J.; Mitri, J.; Pereira, R.F.; Rawlings, K.; Robinson, S. Nutrition therapy for adults with diabetes or prediabetes: A consensus report. Diabetes Care 2019, 42, 731. [Google Scholar] [CrossRef] [PubMed]
- Reader, D.M.; O’Connell, B.S.; Johnson, M.L.; Franz, M. Glycemic and insulinemic response of subjects with type 2 diabetes after consumption of three energy bars. J. Acad. Nutr. Diet. 2002, 102, 1139. [Google Scholar] [CrossRef]
- Urita, Y.; Noda, T.; Watanabe, D.; Iwashita, S.; Hamada, K.; Sugimoto, M. Effects of a soybean nutrition bar on the postprandial blood glucose and lipid levels in patients with diabetes mellitus. Int. J. Food Sci. Nutr. 2012, 63, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulou, M.; Vareltzis, P.; Floros, S.; Androutsos, O.; Bargiota, A.; Gortzi, O. Postprandial Glucose Response in Type 2 Diabetes Mellitus Patients and Possible Antioxidant Properties of a Plant-Based Snack Bar. Foods 2024, 13, 4123. [Google Scholar] [CrossRef]
- Cai, J.-S.; Feng, J.-Y.; Ni, Z.-J.; Ma, R.-H.; Thakur, K.; Wang, S.; Hu, F.; Zhang, J.-G.; Wei, Z.-J. An update on the nutritional, functional, sensory characteristics of soy products, and applications of new processing strategies. Trends Food Sci. Technol. 2021, 112, 676–689. [Google Scholar] [CrossRef]
- Fatoumata, C.; Wahauwouele Hermann, C.; Tano Marie-Ange Sakia, M.; Koua Jean-Brice, A.; Salimata, C.; Vijayakumar, V.; Camelia, D.; Florentina, M. Household Production of Cookies from Sorghum (Sorghum bicolor) with a Low Glycaemic Index in Prevention and Management of Type 2 Diabetes in Côte d’Ivoire. Curr. Nutr. Food Sci. 2025, 21, 341–349. [Google Scholar] [CrossRef]
- Sasani, N.; Kazemi, A.; Babajafari, S.; Amiri-Ardekani, E.; Rezaiyan, M.; Barati-Boldaji, R.; Mazloomi, S.M.; Clark, C.C.; Ashrafi-Dehkordi, E. The effect of acorn muffin consumption on glycemic indices and lipid profile in type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. Food Sci. Nutr. 2023, 11, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulou, M.; Vareltzis, P.; Floros, S.; Androutsos, O.; Bargiota, A.; Gortzi, O. Development of a Functional Acceptable Diabetic and Plant-Based Snack Bar Using Mushroom (Coprinus comatus) Powder. Foods 2023, 12, 2702. [Google Scholar] [CrossRef] [PubMed]
- Eliana, F.; Pranoto, B.A. A randomized controlled clinical trial of carbohydrate mix-fortified nutrition in type 2 diabetes mellitus patients. Med. J. Indones. 2020, 29, 275–282. [Google Scholar] [CrossRef]
- Manios, Y.; Moschonis, G.; Mavrogianni, C.; Tsoutsoulopoulou, K.; Kogkas, S.; Lambrinou, C.-P.; Efstathopoulou, E. Postprandial glucose and insulin levels in type 2 diabetes mellitus patients after consumption of ready-to-eat mixed meals. Eur. J. Nutr. 2017, 56, 1359–1367. [Google Scholar] [CrossRef]
- Apergi, K.; Karatzi, K.; Reppas, K.; Karaglani, E.; Usheva, N.; Giménez-Legarre, N.; Moreno, L.A.; Dimova, R.; Antal, E.; Jemina, K.; et al. Association of breakfast consumption frequency with fasting glucose and insulin sensitivity/b cells function (HOMA-IR) in adults from high-risk families for type 2 diabetes in Europe: The Feel4Diabetes Study. Eur. J. Clin. Nutr. 2022, 76, 1600–1610. [Google Scholar] [CrossRef]
- Vujović, N.; Piron, M.J.; Qian, J.; Chellappa, S.L.; Nedeltcheva, A.; Barr, D.; Heng, S.W.; Kerlin, K.; Srivastav, S.; Wang, W.; et al. Late isocaloric eating increases hunger, decreases energy expenditure, and modifies metabolic pathways in adults with overweight and obesity. Cell Metab. 2022, 34, 1486–1498.e7. [Google Scholar] [CrossRef]
- Putriani, N.; Perdana, J.; Meiliana; Nugrahedi, P.Y. Effect of thermal processing on key phytochemical compounds in green leafy vegetables: A review. Food Rev. Int. 2022, 38, 783–811. [Google Scholar] [CrossRef]
- Bao, S.; Li, X.; Lan, T.; Wang, J.; Hu, Y.; Sun, X.; Ma, T. Effects of different cooking treatments on the sensory qualities and pigmented phytochemicals of carrots. Food Chem. 2023, 405, 135015. [Google Scholar] [CrossRef]
- Cheng, J.; Li, J.; Xiong, R.-G.; Wu, S.-X.; Xu, X.-Y.; Tang, G.-Y.; Huang, S.-Y.; Zhou, D.-D.; Li, H.; Feng, Y. Effects and mechanisms of anti-diabetic dietary natural products: An updated review. Food Funct. 2024, 15, 1758–1778. [Google Scholar] [CrossRef] [PubMed]
- Guiné, R. The drying of foods and its effect on the physical-chemical, sensorial and nutritional properties. Int. J. Food Eng. 2018, 2, 93–100. [Google Scholar] [CrossRef]
- Arvaniti, O.S.; Samaras, Y.; Gatidou, G.; Thomaidis, N.S.; Stasinakis, A.S. Review on fresh and dried figs: Chemical analysis and occurrence of phytochemical compounds, antioxidant capacity and health effects. Food Res. Int. 2019, 119, 244–267. [Google Scholar] [CrossRef]
- Omolola, A.O.; Jideani, A.I.; Kapila, P.F. Quality properties of fruits as affected by drying operation. Crit. Rev. Food Sci. Nutr. 2017, 57, 95–108. [Google Scholar] [CrossRef]
- Borczak, B.; Sikora, M.; Sikora, E.; Dobosz, A.; Kapusta-Duch, J. Glycaemic index of wheat bread. Starch-Stärke 2018, 70, 1700022. [Google Scholar] [CrossRef]
- Skřivan, P.; Sluková, M.; Sinica, A.; Bleha, R.; Švec, I.; Šárka, E.; Pourová, V. Glycaemic Index of Bakery Products and Possibilities of Its Optimization. Appl. Sci. 2024, 14, 6070. [Google Scholar] [CrossRef]
- Cediel, G.; Reyes, M.; da Costa Louzada, M.L.; Steele, E.M.; Monteiro, C.A.; Corvalán, C.; Uauy, R. Ultra-processed foods and added sugars in the Chilean diet (2010). Public Health Nutr. 2018, 21, 125–133. [Google Scholar] [CrossRef]
- Coe, S.; Spiro, A. Cooking at home to retain nutritional quality and minimise nutrient losses: A focus on vegetables, potatoes and pulses. Nutr. Bull. 2022, 47, 538–562. [Google Scholar] [CrossRef]
- Rajpurohit, B.; Li, Y. Overview on pulse proteins for future foods: Ingredient development and novel applications. J. Future Foods 2023, 3, 340–356. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies. Scientific opinion on dietary reference values for carbohydrates and dietary fibre. EFSA J. 2010, 8, 1462. [Google Scholar] [CrossRef]
- Delcour, J.A.; Aman, P.; Courtin, C.M.; Hamaker, B.R.; Verbeke, K. Prebiotics, Fermentable Dietary Fiber, and Health Claims. Adv. Nutr. 2016, 7, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Alkhatib, A.; Tsang, C.; Tuomilehto, J. Olive oil nutraceuticals in the prevention and management of diabetes: From molecules to lifestyle. Int. J. Mol. Sci. 2018, 19, 2024. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.; McArdle, P.; Taplin, J.; Unwin, D.; Unwin, J.; Deakin, T.; Wheatley, S.; Murdoch, C.; Malhotra, A.; Mellor, D. Dietary strategies for remission of type 2 diabetes: A narrative review. J. Hum. Nutr Diet. 2022, 35, 165–178. [Google Scholar] [CrossRef]
- The Diabetes and Nutrition Study Group (DNSG) of the European Association for the Study of Diabetes (EASD). Evidence-based European recommendations for the dietary management of diabetes. Diabetologia 2023, 66, 965–985. [Google Scholar] [CrossRef]
- Ewers, B.; Blond, M.B.; Bruun, J.M.; Vilsbøll, T. Effects of basic carbohydrate counting versus standard dietary care for glycaemic control in type 2 diabetes (The BCC Study): A randomised, controlled trial. Nutr. Diabetes 2024, 14, 47. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 1. Improving Care and Promoting Health in Populations: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48 (Suppl. 1), S14–S26. [Google Scholar] [CrossRef] [PubMed]
- Sasson, C.; Eckel, R.; Alger, H.; Bozkurt, B.; Carson, A.; Daviglus, M.; Deedwania, P.; Kirley, K.; Lamendola, C.; Nguyen, M.; et al. American heart association diabetes and cardiometabolic health summit: Summary and recommendations. J. Am. Heart Assoc. 2018, 7, e009271. [Google Scholar] [CrossRef]
- Koloverou, E.; Panagiotakos, D.B. Macronutrient composition and management of non-insulin-dependent diabetes mellitus (NIDDM): A new paradigm for individualized nutritional therapy in diabetes patients. Rev. Diabet. Stud. RDS 2016, 13, 6. [Google Scholar] [CrossRef]
- Steinberg, D.; Kay, M.; Burroughs, J.; Svetkey, L.P.; Bennett, G.G. The effect of a digital behavioral weight loss intervention on adherence to the Dietary Approaches to Stop Hypertension (DASH) dietary pattern in medically vulnerable primary care patients: Results from a randomized controlled trial. J. Acad. Nutr. Diet. 2019, 119, 574–584. [Google Scholar] [CrossRef]
- Patel, L.; Alicandro, G.; La Vecchia, C. Dietary Approaches to Stop Hypertension (DASH) diet and associated socio-economic inequalities in the UK. Br. J. Nutr. 2020, 124, 1076–1085. [Google Scholar] [CrossRef]
- Papamichou, D.; Panagiotakos, D.B.; Itsiopoulos, C. Dietary patterns and management of type 2 diabetes: A systematic review of randomised clinical trials. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 531–543. [Google Scholar] [CrossRef]
- Manios, Y.; Grammatikaki, E.; Papoutsou, S.; Liarigkovinos, T.; Kondaki, K.; Moschonis, G. Nutrient intakes of toddlers and preschoolers in Greece: The GENESIS study. J. Am. Diet. Assoc. 2008, 108, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Miguel-Berges, M.L.; Mouratidou, T.; Santaliestra-Pasias, A.; Androutsos, O.; Iotova, V.; Galcheva, S.; De Craemer, M.; Cardon, G.; Koletzko, B.; Kulaga, Z.; et al. Longitudinal associations between diet quality, sedentary behaviours and physical activity and risk of overweight and obesity in preschool children: The ToyBox-study. Pediatr. Obes. 2023, 18, e13068. [Google Scholar] [CrossRef]
- Manios, Y.; Kourlaba, G.; Kondaki, K.; Grammatikaki, E.; Anastasiadou, A.; Roma-Giannikou, E. Obesity and television watching in preschoolers in Greece: The GENESIS study. Obesity 2009, 17, 2047–2053. [Google Scholar] [CrossRef]
- Manios, Y.; Grammatikaki, E.; Kondaki, K.; Ioannou, E.; Anastasiadou, A.; Birbilis, M. The effect of maternal obesity on initiation and duration of breast-feeding in Greece: The GENESIS study. Public Health Νutr. 2009, 12, 517–524. [Google Scholar] [CrossRef]
- Manios, Y.; Kondaki, K.; Kourlaba, G.; Grammatikaki, E.; Birbilis, M.; Ioannou, E. Television viewing and food habits in toddlers and preschoolers in Greece: The GENESIS study. Eur. J. Pediatr. 2009, 168, 801–808. [Google Scholar] [CrossRef]
- Manios, Y.; Kourlaba, G.; Kondaki, K.; Grammatikaki, E.; Birbilis, M.; Oikonomou, E.; Roma-Giannikou, E. Diet Quality of Preschoolers in Greece Based on the Healthy Eating Index: The GENESIS Study. J. Am. Diet. Assoc. 2009, 109, 616–623. [Google Scholar] [CrossRef]
- Pinket, A.-S.; De Craemer, M.; Huybrechts, I.; De Bourdeaudhuij, I.; Deforche, B.; Cardon, G.; Androutsos, O.; Koletzko, B.; Moreno, L.A.; Socha, P.; et al. Multibehavioural Interventions with a Focus on Specific Energy Balance-Related Behaviours Can Affect Diet Quality in Preschoolers from Six European Countries: The ToyBox-Study. Nutrients 2017, 9, 479. [Google Scholar] [CrossRef] [PubMed]
- Androutsos, O.; Saltaouras, G.; Kipouros, M.; Koutsaki, M.; Migdanis, A.; Georgiou, C.; Perperidi, M.; Papadopoulou, S.K.; Kosti, R.I.; Giaginis, C. Comparative Analysis of Dietary Behavior in Children and Parents During COVID-19 Lockdowns in Greece: Insights from a Non-Representative Sample. Nutrients 2024, 17, 112. [Google Scholar] [CrossRef]
- Rahimi, G.R.M.; Yousefabadi, H.A.; Niyazi, A.; Rahimi, N.M.; Alikhajeh, Y. Effects of Lifestyle Intervention on Inflammatory Markers and Waist Circumference in Overweight/Obese Adults With Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Biol. Res. Nurs. 2022, 24, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional food. Product development, marketing and consumer acceptance—A review. Appetite 2008, 51, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulou, M.; Vareltzis, P.; Gortzi, O. A Systematic Review of the Twelve Most Popular Bean Varieties, Highlighting Their Potential as Functional Foods Based on the Health Benefits Derived from Their Nutritional Profiles, Focused on Non-Communicable Diseases. Appl. Sci. 2024, 14, 10215. [Google Scholar] [CrossRef]
- Mann, J.; De Leeuw, I.; Hermansen, K.; Karamanos, B.; Karlström, B.; Katsilambros, N.; Riccardi, G.; Rivellese, A.; Rizkalla, S.; Slama, G. Diabetes and Nutrition Study Group (DNSG) of the European Association. Evidence-based nutritional approaches to the treatment and prevention of diabetes mellitus. Nutr. Metab. Cardiovasc. Dis. 2004, 14, 373–394. [Google Scholar] [CrossRef]
- ElSayed, N.A.; McCoy, R.G.; Aleppo, G.; Balapattabi, K.; Beverly, E.A.; Briggs Early, K.; Bruemmer, D.; Echouffo-Tcheugui, J.B.; Ekhlaspour, L.; Garg, R.; et al. 13. Older Adults: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48, S266–S282. [Google Scholar]
- Bhattacharya, S.; Kalra, S. ADA–EASD Consensus Report on the Management of Hyperglycaemia in Type 2 Diabetes in an Afro-Asian Context: Broadening the Perspective. TouchREVIEWS Endocrinol. 2023, 19, 4. [Google Scholar] [CrossRef]
- Dyson, P.A. A practical guide to delivering nutritional advice to people with diabetes. Diabetes Ther. 2019, 10, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Castro-Barquero, S.; Ruiz-León, A.M.; Sierra-Pérez, M.; Estruch, R.; Casas, R. Dietary strategies for metabolic syndrome: A comprehensive review. Nutrients 2020, 12, 2983. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Kontogianni, M.; Mitrou, P.; Magriplis, E.; Vassiliadi, D.; Nomikos, T.; Lambadiari, V.; Georgousopoulou, E.; Dimitriadis, G. Effects of 6 vs 3 eucaloric meal patterns on glycaemic control and satiety in people with impaired glucose tolerance or overt type 2 diabetes: A randomized trial. Diabetes Metab. 2018, 44, 226–234. [Google Scholar] [CrossRef]
- Hallberg, S.J.; McKenzie, A.L.; Williams, P.T.; Bhanpuri, N.H.; Peters, A.L.; Campbell, W.W.; Hazbun, T.L.; Volk, B.M.; McCarter James, P.; Phinney Stephen, D.; et al. Effectiveness and safety of a novel care model for the management of type 2 diabetes at 1 year: An open-label, non-randomized, controlled study. Diabetes Ther. 2018, 9, 583–612. [Google Scholar] [CrossRef]
- Davison, N.B.; Gaffney, C.J.; Kerns, J.G.; Zhuang, Q.D. Recent progress and perspectives on non-invasive glucose sensors. Diabetology 2022, 3, 56–71. [Google Scholar] [CrossRef]
- Tatti, P.; Pavandeep, S. Gender difference in type 1 diabetes: An underevaluated dimension of the disease. Diabetology 2022, 3, 364–368. [Google Scholar] [CrossRef]
- Sharma, M.; Vanam, H.P.; Panda, N.K.; Patro, S.K.; Arora, R.; Bhadada, S.K.; Rudramurthy, S.M.; Singh, M.P.; Koppula, P.R. Deciphering the neurosensory olfactory pathway and associated neo-immunometabolic vulnerabilities implicated in COVID-associated mucormycosis (CAM) and COVID-19 in a diabetes backdrop—A novel perspective. Diabetology 2022, 3, 193–235. [Google Scholar] [CrossRef]
- Brink, S.J. Insulin past, present, and future: 100 years from Leonard Thompson. Diabetology 2022, 3, 117–158. [Google Scholar] [CrossRef]
Database | Keywords | MeSH Terms (PubMed) | Initial Articles | Duplicates Removed | Final Articles for Analysis | Contribution to Study | Reason for Inclusion |
---|---|---|---|---|---|---|---|
PubMed | #Meals, #Snacks, #Diet, #Nutritional profile, #Nutrients, #Bioactive compounds, #Health benefits, #Cardiovascular disease, #Type 2 diabetes mellitus, #Obesity, #Nutrition, #Diet and #Randomized clinical trial | #Diet, #Interventions, #Type 2 diabetes mellitus, #Nutrients, #Nutrition | 1203 | 189 | 1014 | Provided a broad understanding of the interplay between diet, food consumption, dietary interventions and health benefits; MeSH terms ensured precision in the search for relevant literature | Widely recognized as a premier biomedical database, frequently used for reviews in healthcare research |
Web of Science | #Meals, #Snacks, #Snack-bars, #Desserts, #Diet, #Nutritional profile, #Nutrients, #Bioactive compounds, #Health benefits, #Diabetes mellitus, #Hyperglycemia, #Hypoglycemia, #Obesity, #Nutrition, and #Diet, #Randomized clinical trial | N/A (Web of Science does not use MeSH terms) | 4 | 2 | 2 | Enhanced the overall coverage of the literature related to the nutrients in meals and snacks, dietary interventions and their impact on health | Provides a multidisciplinary approach, covering a wide range of scientific disciplines |
Scopus | #Meals, #Snacks, #Diet, #Interventions, #Nutrition, #Type 2 diabetes mellitus, #Side effects and #Randomized clinical trial | #Diet, #Interventions, #Type 2 diabetes mellitus | 2000 | 2000 | 0 | Strengthened the evidence base by focusing on bioactive compounds in meals and snacks related to evidence-based interventions; MeSH terms ensured specificity in selecting relevant literature | Renowned for reviews and emphasizing evidence-based interventions in healthcare research |
Cochrane Library | #Interventions, #Diet, #Nutrition, #Type 2 diabetes mellitus, #Side effects and #Randomized clinical trial | #Diet, #Interventions, #Nutrition, #Type 2 diabetes mellitus, #Side effects, #Randomized clinical trial | 51 | 49 | 2 | Strengthened the evidence base by focusing on bioactive compounds in meals and snacks related to evidence-based interventions; MeSH terms ensured specificity in selecting relevant literature | Renowned for reviews and emphasizing evidence-based interventions in healthcare research |
Inclusion Criteria | Exclusion Criteria |
Published in English | Non-original research |
Randomized controlled trials | Not a human study |
Participants aged >18 years old | No comparator group |
Patients with type 2 diabetes mellitus (T2DM) | |
Studies with a minimum 12-month follow-up and a minimum of 50 completors | Cohort study |
Studies published before 2000 |
Study/Authors | Methodology | Participants | Age Group | Diet Pattern 1 | Results 2 | References |
---|---|---|---|---|---|---|
Hernáez et al., 2017 | Randomized controlled trial (1 year) | 196 participants, with half of them being patients with T2DM (113 females and 83 males) | 55–80 years old | Two variations of the Mediterranean diet, one enriched with virgin olive oil and the other enriched with nuts | The Mediterranean diet, especially when enriched with virgin olive oil, improved the atheroprotective functions of HDL in individuals at high cardiovascular risk. | [27] |
Maiorino et al., 2016 | Randomized clinical trial (8.1 years) | 215 patients with T2DM (106 males and 109 females) | 52.4 ± 11.2 years old | The Mediterranean diet aimed to provide no more than 50% of daily energy from carbohydrates and at least 30% of energy from fat; the low-fat diet aimed to provide no more than 30% of energy from fat | Diabetic patients with the highest scores (6–9 points) of adherence to the Mediterranean diet had lower circulating CRP levels and higher circulating total adiponectin levels compared to diabetic patients who scored <3 points on the scale. | [28] |
Shai et al., 2008 | Randomized clinical trial (2 years) | 322 with body-mass index of at least 27 or the presence of T2DM or coronary heart disease | 40–65 years old | Low-CH, Mediterranean or low-fat diet | Among the participants with diabetes, the proportion of glycated hemoglobin at 24 months decreased by 0.4 ± 1.3% in the low-fat group, 0.5 ± 1.1% in the Mediterranean-diet group and 0.9 ± 0.8% in the low-carbohydrate group. The changes were significant only in the low-carbohydrate group. | [29] |
Kouvari et al., 2024 | Cohort multiple randomized clinical trial (20 years) | 103 patients with T2DM (45 females and (58 males) | 41 ± 12 years old | Mediterranean diet | Reduction in all-cause mortality of 9.5%. | [30] |
Bhanpuri et al., 2018 | Randomized clinical trial 1 year) | 262 patients with T2DM (87 females and 175 males) | 54 ± 8 years old | Low-CH diets and very-low-CH (ketogenic) diets: <50% kcal/d from CH and <10% kcal/d from CH in ketogenic diets High protein intake (20–30% kcal/d) High fat intake (30–70% kcal/d) | Weight-loss and weight-loss maintenance. Reduction in DBP. Reduction in LDL-c and triglyceride levels. Increase in HDL-c levels. | [31] |
Tay et al., 2015 | Randomized clinical trial (1 year and 1 month) | 115 obese with T2DM (66 males and 49 females) | 35–68 years old | Low-CH diets and very-low-CH (ketogenic) diets: 53% kcal/d from CH and 17% from protein and <10% kcal/d from CH in ketogenic diets High protein intake (28% kcal/d) High fat intake (58% kcal/d) | Improvements in insulin resistance. Reduction in HbA1c levels. | [32] |
Chen et al., 2022 | Randomized controlled trial (1.5 year) | 71 patients with T2DM (48 males and 23 females) | 63.2 years old | Low-CH diet: 90 g/day | Better outcome on glycemic control, liver function and medication effect score. | [33] |
Lasa et al., 2014 | Randomized clinical trial (1 year) | 191 participants with T2DM (77 men and 114 women) | 55–64.8 years old | Low-fat diet: <30% kcal/d from total fat (<10% saturated fat) 15–17% kcal/d from protein 50–60% kcal/d from CH | Improved glucose metabolism and a short-term improvement in the cholesterol profile. Short-term weight loss. | [34] |
Esposito et al., 2009 | Randomized clinical trial (4 years) | 215 patients with T2DM | 52.4 years old | Mediterranean diet versus low-fat diet | Greater reduction in HbA1c and fasting plasma glucose in the Mediterranean diet group. Increase in adiponectin concentrations and improvement in HOMA. | [35] |
Kavanagh et al., 2024 | Randomized clinical trial (3 years) | 267 patients with T2DM (98 females and 169 males) | 62 ± 0.5 years old | The Portfolio Diet, comprising low-glycemic index or a high-cereal fiber diet | Reduction in HbA1c. | [36] |
Carter et al., 2018 | Randomized clinical trial (1 year) | 137 patients with T2DM (77 females and 60 males) | 61 years old | Intermittent fasting (5:2): (500–600 kcal/d) followed for 2 nonconsecutive days per week (participants followed their usual diet for the other 5 days) or a continuous energy restriction diet (1200–1500 kcal/d) followed for 7 days per week for 12 months | Reduction in HbA1c. | [37] |
Krebs et al., 2012 | Randomized controlled trial (2 years) | 416 patients with T2DM (168 males and 248 females) | 30–75 years old | High-protein diet: High protein intake (20–30% kcal/d) or 1.34–1.50 g/Kg of protein per kilogram of body weight per day Low CH intake (40–50% kcal/d) | Reductions in triglyceride levels, body weight, waist circumference, body fatness, HbA1c and blood pressure along with improvements in renal function were observed. | [38] |
Barnard et al., 2009 | Randomized controlled trial (1.5 year) | 99 patients with T2DM (39 males and 60 females) | 56.7–69.8 years old | A low-fat vegan diet | Reductions in body weight, total cholesterol and LDL. | [39] |
Yaikwawong et al., 2024 | Randomized controlled trial (1 year) | 229 patients with T2DM (116 males and 153 females) | ≥35 years old | Curcumin (1500 mg/day) or placebo | Curcumin extract improves beta cell functions in obese patients with type T2DM. | [40] |
Lean et al., 2024 | Randomized Diabetes Remission Clinical Trial (DiRECT) (5 years) | 149 participants with T2DM | 20–65 years old | Total diet replacement (825–853 kcal per day formula diet) combined with physical activity and support for weight-loss maintenance | Mean weight loss of 7–6 kg with 36% of participants in remission of type 2 diabetes. | [41] |
Biochemical Biomarkers *** | Mean Changes After the Diet Interventions of 15 Included Studies Compared with the Control Ones 1 | p-Value * | References |
---|---|---|---|
Decreased values of glycated hemoglobin (HbA1c) (%) | 0.16–1.1% | p < 0.01 | [28,29,32,34,38] |
Decreased values of fasting plasma glucose (mg/dL) | 0.7–5.2 | p < 0.01 | [32,41] |
Decreased values of insulin (pmol/L) | 38% | p < 0.01 | [32] |
Decreased values of HOMA-IR | 64% | p < 0.01 | [27,32,35] |
Decreased values of total cholesterol (mg/dL) | 0.1 (19%) | p < 0.01 | [36,38] |
Decreased values of LDL-C (mg/dL) | 0.2–2.72 (4.9%) | p < 0.01 | [32,38] |
Increased values of HDL-C (mg/dL) | 0.1 | p < 0.01 | [27,30,35,38] |
Increased values of Total/HDL-cholesterol ratio | 19–29.1% | p < 0.01 | [35,39] |
Increased values of HDL-C levels (mg/dL) | 1.3 | p < 0.01 | [27,30] |
Decreased values of body weight (kg) | 0.5−9.8 | p < 0.01 | [32,34,39,41] |
Decreased values of systolic blood pressure (mmHg) | 1–7.3 | p < 0.01 | [27,32,39] |
Decreased values of diastolic blood pressure (mmHg) | 1–8.6 | p < 0.01 | [27,32,39] |
Decreased values of waist circumference (cm) | 4 | p < 0.01 | [34,38] |
Decreased values of HOMA-IR | 64% | p < 0.01 | [30,35,39] |
Minimization of additive risk factors for atherosclerotic cardiovascular disease (ASCVD) | −11.9% | p < 0.01 | [27,30] |
Increased values of ApoA-I (mg/dL) | 3 (+9.8%) | p < 0.01 | [27] |
Decreased values of Apo B (mg/dL) | 5 (−1.6%) | p < 0.01 | [27] |
Decreased values of ApoB/ApoA-I ratio | −9.5% | p < 0.01 | [29] |
Decreased values of CRP (mg/L) | 0.3–1.3 (53%) | p < 0.01 | [28,32] |
Increased values of adiponectin (μg/mL) | 0.2–0.8 (72%) | p < 0.01 | [28,34,35] |
Increased values of adiponectin/leptin ratio | 0.043 | p < 0.01 | [34] |
Increased values of adiponectin/HOMA-IR ratio | 0.06 | p < 0.01 | [34,35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimopoulou, M.; Androutsos, O.; Kipouros, M.; Bargiota, A.; Gortzi, O. Culinary Medicine in Type II Diabetes Mellitus Management: A Narrative Review of Randomized Clinical Trials on Dietary Interventions (Nutritional Profiles of Meals and Snacks, Timing, Preparation and Key Considerations). Diabetology 2025, 6, 72. https://doi.org/10.3390/diabetology6080072
Dimopoulou M, Androutsos O, Kipouros M, Bargiota A, Gortzi O. Culinary Medicine in Type II Diabetes Mellitus Management: A Narrative Review of Randomized Clinical Trials on Dietary Interventions (Nutritional Profiles of Meals and Snacks, Timing, Preparation and Key Considerations). Diabetology. 2025; 6(8):72. https://doi.org/10.3390/diabetology6080072
Chicago/Turabian StyleDimopoulou, Maria, Odysseas Androutsos, Michail Kipouros, Alexandra Bargiota, and Olga Gortzi. 2025. "Culinary Medicine in Type II Diabetes Mellitus Management: A Narrative Review of Randomized Clinical Trials on Dietary Interventions (Nutritional Profiles of Meals and Snacks, Timing, Preparation and Key Considerations)" Diabetology 6, no. 8: 72. https://doi.org/10.3390/diabetology6080072
APA StyleDimopoulou, M., Androutsos, O., Kipouros, M., Bargiota, A., & Gortzi, O. (2025). Culinary Medicine in Type II Diabetes Mellitus Management: A Narrative Review of Randomized Clinical Trials on Dietary Interventions (Nutritional Profiles of Meals and Snacks, Timing, Preparation and Key Considerations). Diabetology, 6(8), 72. https://doi.org/10.3390/diabetology6080072