Serum Sphingolipid and Glycerophospholipid Synthesis, Especially Phosphatidylinositol/Lysophosphatidylinositol, Phosphatidylglycerol/Lysophosphatidylglycerol, and Ceramides, Are Significantly Influenced by Diabetes Mellitus and Associated with Its Complications
Abstract
1. Introduction
Aim
2. Participants and Methods
2.1. Study Participants
2.2. Ethics
2.3. Measurement of Serum Glycerophospholipids and Sphingolipids and Other Clinical Parameters in T2DM
2.4. Statistical Analyses
3. Results
3.1. Participants’ Clinical Demographics
- Urinary TP/Cre ratio and Urinary Alb/Cre ratio related measures:
- Definitions of Therapeutic Categories in Table 1:
3.2. Total PE, PG, and PI Serum Concentrations Were Elevated, Whereas Total PC Serum Levels Were Reduced in Individuals with T2DM
3.3. Total LPG and LPI Serum Levels Were Higher, Whereas Total LPC and LPE Serum Levels Were Lower in Individuals with T2DM
3.4. CER Serum Concentrations Were Higher in Individuals with T2DM
3.5. LPG Serum Levels Were Associated with T2DM-Associated Coronary, Cerebral, and Nephropathy Complications
3.6. LPI Levels Were Associated with T2DM-Associated Coronary, Cerebral, and Nephropathy Complications
3.7. Association of Lipids with Laboratory Data in Participants with T2DM
3.8. Principal Component Analysis (PCA) and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) Effectively Differentiated the Presence of T2DM in Sphingolipids and Glycerophospholipids, Particularly Emphasizing the Contributions of PE 28:0, PG 32:0, and PI 40:1 to T2DM
3.9. ROC Analysis Revealed Elevated Area Under the Curve (AUC) Values for PG 32:0, PG 34:1, PE 28:0, and C16:0 Cer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef]
- Morita, Y.; Kurano, M.; Sakai, E.; Sawabe, M.; Aoki, J.; Yatomi, Y. Simultaneous analyses of urinary eicosanoids and related mediators identified tetranor-prostaglandin E metabolite as a novel biomarker of diabetic nephropathy. J. Lipid Res. 2021, 62, 100120. [Google Scholar] [CrossRef]
- Wang, C.; Kong, H.; Guan, Y.; Yang, J.; Gu, J.; Yang, S.; Xu, G. Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Anal. Chem. 2005, 77, 4108–4116. [Google Scholar] [CrossRef] [PubMed]
- Packard, C.J. Remnants, LDL, and the quantification of lipoprotein-associated risk in atherosclerotic cardiovascular disease. Curr. Atheroscler. Rep. 2022, 24, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Dal Canto, E.; Ceriello, A.; Rydén, L.; Ferrini, M.; Hansen, T.B.; Schnell, O.; Standl, E.; Beulens, J.W. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur. J. Prev. Cardiol. 2019, 26 (Suppl. S2), 25–32. [Google Scholar] [CrossRef] [PubMed]
- Berezin, A.E.; Berezin, A.A. Circulating cardiac biomarkers in diabetes mellitus: A new dawn for risk Stratification—A narrative review. Diabetes Ther. 2020, 11, 1271–1291. [Google Scholar] [CrossRef]
- Giugliano, R.P.; Cannon, C.P.; Blazing, M.A.; Nicolau, J.C.; Corbalán, R.; Špinar, J.; Park, J.-G.; White, J.A.; Bohula, E.A.; Braunwald, E.; et al. Benefit of adding ezetimibe to statin therapy on cardiovascular outcomes and safety in patients with versus without diabetes mellitus: Results from IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial). Circulation 2018, 137, 1571–1582. [Google Scholar] [CrossRef]
- Mandal, N.; Grambergs, R.; Mondal, K.; Basu, S.K.; Tahia, F.; Dagogo-Jack, S. Role of ceramides in the pathogenesis of diabetes mellitus and its complications. J. Diabetes Complicat. 2021, 35, 107734. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Lee, S.Y.; Bae, Y. Functional roles of sphingolipids in immunity and their implication in disease. Molecules 2023, 55, 1110–1130. [Google Scholar] [CrossRef]
- Hannun, Y.A.; Obeid, L.M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 2018, 19, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Kusminski, C.M.; Scherer, P.E. Lowering ceramides to overcome diabetes. Science 2019, 365, 319–320. [Google Scholar] [CrossRef]
- Basta, G.; Schmidt, A.M.; De Caterina, R. Advanced glycation end products and vascular inflammation: Implications for accelerated atherosclerosis in diabetes. J. Intern. Med. 2004, 63, 582–592. [Google Scholar]
- Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol. 2014, 18, 1–14. [Google Scholar] [CrossRef]
- Rodriguez Cuenca, S.; Pellegrinelli, V.; Campbell, M.; Oresic, M.; Vidal Puig, A. Sphingolipids and glycerophospholipids—The “ying and yang” of lipotoxicity in metabolic diseases. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 66, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Meikle, P.J.; Summers, S.A. Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Prog. Lipid Res. 2017, 13, 79–91. [Google Scholar] [CrossRef]
- Yamada, M.; Kita, Y.; Kohira, T.; Yoshida, K.; Hamano, F.; Tokuoka, S.M.; Shimizu, T. A comprehensive quantification method for eicosanoids and related compounds by using liquid chromatography/mass spectrometry with high-speed continuous ionization polarity switching. J. Chromatogr. B 2015, 995–996, 74–84. [Google Scholar] [CrossRef]
- Masukawa, Y.; Narita, H.; Sato, H.; Naoe, A.; Kondo, N.; Sugai, Y.; Oba, T.; Homma, R.; Ishikawa, J.; Takagi, Y.; et al. Comprehensive quantification of ceramide species in human stratum corneum. J. Lipid Res. 2009, 50, 1708–1719. [Google Scholar] [CrossRef]
- Jiang, X.; Han, X. Characterization and direct quantitation of sphingoid base-1-phosphates from lipid extracts: A shotgun lipidomics approach. J. Lipid Res. 2006, 47, 1865–1873. [Google Scholar] [CrossRef]
- Wang, C.; Wang, M.; Han, X. Comprehensive and quantitative analysis of lysophospholipid molecular species present in obese mouse liver by shotgun lipidomics. Anal. Chem. 2015, 87, 4879–4887. [Google Scholar] [CrossRef]
- Borges-Araújo, L.; Domingues, M.M.; Fedorov, A.; Santos, N.C.; Melo, M.N.; Fernandes, F. Acyl-chain saturation regulates the order of phosphatidylinositol 4,5-bisphosphate nanodomains. Commun. Chem. 2021, 4, 164. [Google Scholar] [CrossRef]
- Rabinovich, A.L.; Lyubartsev, A.P.; Zhurkin, D.V. Unperturbed hydrocarbon chains and liquid phase bilayer lipid chains: A computer simulation study. Eur. Biophys. J. 2018, 47, 109–130. [Google Scholar]
- Angala, S.K.; Carreras-Gonzalez, A.; Huc-Claustre, E.; Anso, I.; Kaur, D.; Jones, V.; Palčeková, Z.; Belardinelli, J.M.; de Sousa-D’aUria, C.; Shi, L.; et al. Acylation of glycerolipids in mycobacteria. Nat. Commun. 2023, 14, 6694. [Google Scholar] [CrossRef]
- Kashiwagi, A.; Kasuga, M.; Araki, E.; Oka, Y.; Hanafusa, T.; Ito, H.; Tominaga, M.; Oikawa, S.; Noda, M.; Kawamura, T.; et al. International clinical harmonization of glycated hemoglobin in Japan: From Japan Diabetes Society to National Glycohemoglobin Standardization Program values. J. Diabetes Investig. 2012, 3, 39–40. [Google Scholar] [CrossRef]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A.; et al. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef]
- Verheij, H.M.; Smith, P.F.; Bonsen, P.P.M.; Van Deenen, L.L.M. The chemical synthesis of a phosphatidylglucose. Biochim. Biophys. Acta 1970, 218, 97–101. [Google Scholar] [CrossRef]
- Klemm, D.J.; Elias, L. Phosphatidylglycerol-modulated protein kinase activity from human spleen: II. Interaction with phospholipid vesicles. Arch. Biochem. Biophys. 1988, 265, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Green, C.D.; Maceyka, M.; Cowart, L.A.; Spiegel, S. Sphingolipids in metabolic disease: The good, the bad, and the unknown. Cell Metab. 2021, 33, 1293–1306. [Google Scholar] [CrossRef]
- Hernández-Bello, F.; Franco, M.; Pérez-Méndez, Ó.; Donis-Maturano, L.; Zarco-Olvera, G.; Bautista-Pérez, R. Sphingolipid metabolism and its relationship with cardiovascular, renal and metabolic diseases. Arch. Med. Res. 2023, 93, 88–95. [Google Scholar]
- Tan, S.T.; Ramesh, T.; Toh, X.R.; Nguyen, L.N. Emerging roles of lysophospholipids in health and disease. Prog. Lipid Res. 2020, 80, 101068. [Google Scholar] [CrossRef] [PubMed]
- Wölk, C.; Youssef, H.; Guttenberg, T.; Marbach, H.; Vizcay-Barrena, G.; Shen, C.; Brezesinski, G.; Harvey, R.D. Phase diagram for a Lysyl-Phosphatidylglycerol analogue in biomimetic mixed monolayers with phosphatidylglycerol: Insights into the tunable properties of bacterial membranes. ChemPhysChem 2020, 21, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Khatib, T.O.; Stevenson, H.; Yeaman, M.R.; Bayer, A.S.; Pokorny, A. Binding of daptomycin to anionic lipid vesicles is reduced in the presence of lysyl-phosphatidylglycerol. Antimicrob. Agents Chemother. 2016, 60, 5051–5053. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, Y.; Ong, C.; Subramaniam, T.; Choi, H.W.; Yuan, J.-M.; Koh, W.-P.; Pan, A. Metabolic signatures and risk of type 2 diabetes in a Chinese population: An untargeted metabolomics study using both LC-MS and GC-MS. Diabetologia 2016, 59, 2349–2359. [Google Scholar] [CrossRef]
- Meikle, P.J.; Wong, G.; Barlow, C.K.; Weir, J.M.; Greeve, M.A.; MacIntosh, G.L.; Almasy, L.; Comuzzie, A.G.; Mahaney, M.C.; Kowalczyk, A.; et al. Plasma lipid profiling shows similar associations with prediabetes and type 2 diabetes. PLoS ONE 2013, 8, e74341. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Potting, C.; Tatsuta, T.; König, T.; Haag, M.; Wai, T.; Aaltonen, M.J.; Langer, T. TRIAP1/PRELI complexes prevent apoptosis by mediating intramitochondrial transport of phosphatidic acid. Cell Metab. 2013, 18, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Hallman, M.; Gluck, L. Phosphatidylglycerol in lung surfactant II. Subcellular distribution and mechanism of biosynthesis in vitro. Biochim. Biophys. Acta 1975, 409, 172–191. [Google Scholar] [CrossRef]
- Chen, W.; Chao, Y.; Chang, W.; Chan, J.; Hsu, Y.H. Phosphatidylglycerol incorporates into cardiolipin to improve mitochondrial activity and inhibits inflammation. Sci. Rep. 2018, 8, 4919. [Google Scholar] [CrossRef]
- Klemm, D.J.; Elias, L. Purification and assay of a phosphatidylglycerol-stimulated protein kinase from murine leukemic cells and its perturbation in response to IL-3 and PMA treatment. Exp. Hematol. 1988, 16, 855–860. [Google Scholar]
- Laganowsky, A.; Reading, E.; Allison, T.M.; Ulmschneider, M.B.; Degiacomi, M.T.; Baldwin, A.J.; Robinson, C.V. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 2014, 510, 172–175. [Google Scholar] [CrossRef]
- Marty, N.J.; Holman, C.L.; Abdullah, N.; Johnson, C.P. The C2 domains of otoferlin, dysferlin, and myoferlin alter the packing of lipid bilayers. Biochemistry 2013, 52, 5585–5592. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Sun, H.; Liu, X.; Zheng, Y.; Xu, D.; Wang, J.; Jia, D.; Han, X.; Liu, F.; et al. Defective phosphatidylglycerol remodeling causes hepatopathy, linking mitochondrial dysfunction to hepatosteatosis. Cell. Mol. Gastroenterol. Hepatol. 2019, 7, 763–781. [Google Scholar] [CrossRef]
- Veldhuizen, R.; Nag, K.; Orgeig, S.; Possmayer, F. The role of lipids in pulmonary surfactant. Biochim. Biophys. Acta 1998, 1408, 90–108. [Google Scholar] [CrossRef]
- Uranbileg, B.; Kurano, M.; Kano, K.; Sakai, E.; Arita, J.; Hasegawa, K.; Nishikawa, T.; Ishihara, S.; Yamashita, H.; Seto, Y.; et al. Sphingosine 1-phosphate lyase facilitates cancer progression through converting sphingolipids to glycerophospholipids. Clin. Transl. Med. 2022, 12, e1056. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sherwani, S.I.; Khan, H.A.; Ekhzaimy, A.; Masood, A.; Sakharkar, M.K. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark. Insights 2016, 2016, 95–104. [Google Scholar] [CrossRef]
- Helsley, R.N.; Varadharajan, V.; Brown, A.L.; Gromovsky, A.D.; Schugar, R.C.; Ramachandiran, I.; Fung, K.; Kabbany, M.N.; Banerjee, R.; Neumann, C.K.; et al. Obesity-linked suppression of membrane-bound O-acyltransferase 7 (MBOAT7) drives non-alcoholic fatty liver disease. eLife 2019, 8, e49882. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shimizu, K.; Ono, M.; Mikamoto, T.; Urayama, Y.; Yoshida, S.; Hase, T.; Michinaga, S.; Nakanishi, H.; Iwasaki, M.; Terada, T.; et al. Overexpression of lysophospholipid acyltransferase, LPLAT10/LPCAT4/LPEAT2, in the mouse liver increases glucose-stimulated insulin secretion. FASEB J. 2024, 38, e23425. [Google Scholar] [CrossRef] [PubMed]
- Wiesner, P.; Leidl, K.; Boettcher, A.; Schmitz, G.; Liebisch, G. Lipid profiling of FPLC-separated lipoprotein fractions by electrospray ionization tandem mass spectrometry. J. Lipid Res. 2009, 50, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Kurano, M.; Kobayashi, T.; Sakai, E.; Tsukamoto, K.; Yatomi, Y. Lysophosphatidylinositol, especially albumin-bound form, induces inflammatory cytokines in macrophages. FASEB J. 2021, 35, e21673. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Song, S.; Ruz-Maldonado, I.; Pingitore, A.; Huang, G.C.; Baker, D.; Jones, P.M.; Persaud, S.J. GPR55-dependent stimulation of insulin secretion from isolated mouse and human islets of langerhans. Diabetes 2016, 18, 1263–1273. [Google Scholar] [CrossRef]
- Razquin, C.; Toledo, E.; Clish, C.B.; Ruiz-Canela, M.; Dennis, C.; Corella, D.; Papandreou, C.; Ros, E.; Estruch, R.; Guasch-Ferré, M.; et al. Plasma lipidomic profiling and risk of type 2 diabetes in the PREDIMED trial. Diabetes Care 2018, 41, 2617–2624. [Google Scholar] [CrossRef]
- Arifin, S.A.; Paternoster, S.; Carlessi, R.; Casari, I.; Ekberg, J.H.; Maffucci, T.; Newsholme, P.; Rosenkilde, M.M.; Falasca, M. Oleoyl-lysophosphatidylinositol enhances glucagon-like peptide-1 secretion from enteroendocrine L-cells through GPR119. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2018, 1863, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Eldor, R.; Raz, I. American diabetes association indications for statins in diabetes. Diabetes Care 2009, 32, S384–S391. [Google Scholar] [CrossRef] [PubMed]
Characteristics | (n = 95) | (n = 85) | p-Value |
---|---|---|---|
Disease | Participants with Type 2 Diabetes Mellitus (Medication usage: Statins; β-blockers; Antiplatelet agents (e.g., aspirin); Insulin; Other antidiabetic medications 1; Antihypertensives 2; Non-statin lipid-lowering agents 3) | HealthyIndividuals (Control) (Medication usage: NIL) | |
Gender (Male/Female) | 59/36 | 67/18 | 0.980 |
Age | 65.41 ± 10.98 | 60.21 ± 8.65 | 0.447 |
BSA, m2 | 6.84 ± 0.89 | 1.87 ± 0.29 | 0.410 |
BMI, kg/m2 | 24.29 ± 3.67 | 20.37 ± 1.33 | 0.097 |
HbA1c, % | 7.56 ± 1.21 | 5.14 ± 0.79 | 0.033 * |
Fasting glucose, mg/dL | 157.18 ± 45.15 | 91.42 ± 4.03 | 0.046 * |
HDL-C, mmol/L | 57.43 ± 17.31 | 96.92 ± 7.15 | 0.031 * |
LDL-C, mmol/L | 107.7 ± 36.23 | 91.42 ± 4.05 | 0.433 |
Triglyceride, mmol/L | 156.01 ± 140.22 | 98.75 ± 8.78 | 0.003 * |
Total cholesterol, mg/dL | 327.93 ± 142.43 | 161.12 ± 5.18 | 0.006 * |
Cholesterol ratio (Total Cholesterol/HDL Cholesterol) | 6.26 ± 4.02 | 2.01 ± 0.26 | 0.042 * |
AST, U/L | 24.28 ± 13.1 | 21.98 ± 4.21 | 0.539 |
ALT, U/L | 23.75 ± 17.83 | 63.62 ± 10.14 | 0.041 * |
eGFR, mL/min/1.73 m2 | 65.69 ± 23.46 | 102.95 ± 7.19 | 0.012 * |
Urinary TP/Cre, mg/g·Cr | 394.6 ± 998.7 | 9.40 ± 1.09 | 0.004 * |
Urinary Alb/Cre, mg/g·Cr | 167.16 ± 417.53 | 4.44 ± 0.57 | 0.039 * |
Clinical Biomarker | PE 28:0 | PG 32:0 | PG 34:1 | LPE 16:0 | LPE 16:1 | LPG 16:0 | LPG 16:1 | LPG 18:1 | LPI 18:0 |
---|---|---|---|---|---|---|---|---|---|
Glucose | 0.81 ** | 0.78 ** | 0.65 ** | 0.58 * | 0.50 * | 0.31 * | 0.58 * | 0.50 * | 0.30 * |
HbA1c | 0.80 ** | 0.78 ** | 0.70 ** | 0.60 * | 0.50 * | 0.40 * | 0.60 * | 0.50 * | 0.32 * |
HDL-C | 0.78 ** | 0.72 ** | 0.54 * | 0.52 * | 0.44 * | 0.32 * | 0.60 * | 0.52 * | 0.32 * |
LDL-C | 0.81 ** | 0.72 ** | 0.53 * | 0.51 * | 0.42 * | 0.33 * | 0.61 * | 0.45 * | 0.35 * |
TG | 0.80 ** | 0.78 ** | 0.86 ** | 0.52 * | 0.46 * | 0.28 * | 0.54 * | 0.50 * | 0.26 * |
Total cholesterol | 0.85 ** | 0.86 ** | 0.87 ** | 0.53 * | 0.46 * | 0.33 * | 0.61 * | 0.53 * | 0.30 * |
Cholesterol ratio | 0.82 ** | 0.81 ** | 0.86 ** | 0.46 * | 0.40 * | 0.35 * | 0.60 * | 0.51 * | 0.30 * |
Clinical Biomarker | C16:0 Cer | C18:0 Cer | SM 38:1 | SM 40:2 |
---|---|---|---|---|
Glucose | 0.84 ** | 0.69 ** | 0.45 * | 0.42 * |
HbA1c | 0.85 ** | 0.70 ** | 0.46 * | 0.41 * |
HDL-C | 0.79 ** | 0.73 ** | 0.49 * | 0.48 * |
LDL-C | 0.80 ** | 0.71 ** | 0.50 * | 0.48 * |
TG | 0.77 ** | 0.69 ** | 0.51 * | 0.47 * |
Total cholesterol | 0.83 ** | 0.75 ** | 0.54 * | 0.52 * |
Cholesterol ratio | 0.76 ** | 0.71 ** | 0.50 * | 0.49 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takizawa, H.; Uranbileg, B.; Yutaka, Y.; Kurano, M. Serum Sphingolipid and Glycerophospholipid Synthesis, Especially Phosphatidylinositol/Lysophosphatidylinositol, Phosphatidylglycerol/Lysophosphatidylglycerol, and Ceramides, Are Significantly Influenced by Diabetes Mellitus and Associated with Its Complications. Diabetology 2025, 6, 112. https://doi.org/10.3390/diabetology6100112
Takizawa H, Uranbileg B, Yutaka Y, Kurano M. Serum Sphingolipid and Glycerophospholipid Synthesis, Especially Phosphatidylinositol/Lysophosphatidylinositol, Phosphatidylglycerol/Lysophosphatidylglycerol, and Ceramides, Are Significantly Influenced by Diabetes Mellitus and Associated with Its Complications. Diabetology. 2025; 6(10):112. https://doi.org/10.3390/diabetology6100112
Chicago/Turabian StyleTakizawa, Hideyuki, Baasanjav Uranbileg, Yatomi Yutaka, and Makoto Kurano. 2025. "Serum Sphingolipid and Glycerophospholipid Synthesis, Especially Phosphatidylinositol/Lysophosphatidylinositol, Phosphatidylglycerol/Lysophosphatidylglycerol, and Ceramides, Are Significantly Influenced by Diabetes Mellitus and Associated with Its Complications" Diabetology 6, no. 10: 112. https://doi.org/10.3390/diabetology6100112
APA StyleTakizawa, H., Uranbileg, B., Yutaka, Y., & Kurano, M. (2025). Serum Sphingolipid and Glycerophospholipid Synthesis, Especially Phosphatidylinositol/Lysophosphatidylinositol, Phosphatidylglycerol/Lysophosphatidylglycerol, and Ceramides, Are Significantly Influenced by Diabetes Mellitus and Associated with Its Complications. Diabetology, 6(10), 112. https://doi.org/10.3390/diabetology6100112