Neurocognitive Disorders in Post and Long Covid Patients: Preliminary Data, Gender Differences and New Diabetes Diagnosis
Abstract
:1. Introduction
- ▯
- The possible presence of encephalic alterations (from the cortex to the brain stem), was verified through neuroimaging techniques, and the possible correlations with neurological alterations and neurocognition were found via the tests.
- ▯
- The hypothesis is that Covid neuroinflammation, as ascertained by recently published studies, can also produce an alteration of executive functions such as to configure a real dysexecutive syndrome. In this paper, we will focus on this second point.
- ▯
- Observation in the sample of the presence/absence of diabetic pathology, diabetes with the post-Covid onset, and the correlations between emerging diabetes and mood alterations (depression/anxiety), and executive functions with particular attention to gender differences.
“neurological and neuropsychiatric symptoms in individuals with PASC include fatigue, myalgia, headaches, sleep disturbance, anxiety, depression, dizziness, anosmia, dysgeusia, and cognitive symptoms, often called a brain fog. It is important for clinicians to recognize that disease severity may not be a predictor of PASC symptoms as many patients presenting to outpatient COVID recovery centers experienced only mild initial SARS-CoV-2 infection. Primary cognitive symptoms include deficits in reasoning, problem solving, spatial planning, working memory, difficulty with word retrieval, and poor attention. In addition, small studies in patients recovering from COVID-19 who develop postural orthostatic tachycardia syndrome (POTS) have shown worsening executive function and attention in the standing position.13 Assessment and treatment of cognitive symptoms in patients with PASC is the focus of this review.”
2. Methods
2.1. Patients
2.2. Phases
- The first is the administration of the first level protocol [17] with Mini Mental State Exmination (MMSE), Immediate and deferred Rey figure, Frontal assessment battery (FAB), Hamilton D, Stay X and Y, Impact of Event Scale–Revised (IES). Each neuropsychological test will be corrected for gender, age, and schooling as required by international guidelines [18].
- Patients found affected by cognitive alterations moved to the second phase of the research with the administration of a second level protocol [17] with the Short Neuropsychological Exam, Davinson Trauma Scale (DTS)-800 (evaluates the 17 symptoms of PTSD) and SF-36 (a questionnaire that aims to quantify health status and measure health-related quality of life).
- The third phase is a correlation study between the test results and the finding of organic alterations in Neuroimaging [19].
- In the fourth phase, the aim is to submit people with a dysexecutive syndrome to a structured cognitive rehabilitation protocol, in association with new embodiment studies for the rehabilitation of executive functions, intervening on the damaged domains.
2.3. First Level Instruments
2.4. Second Level Instruments
2.5. Statistical Analysis
3. Results
3.1. Cognitive Alterations
3.2. Mood Disorder: Anxiety e Affective Disorders
3.3. Post Traumatic Stress Disorders
3.4. Neurocovid and Diabetes
4. Discussion
“This is the first study that correlates functional connectivity, the structure of the white matter, the local volume of the grey matter and affective state. The rise of depressive symptoms in patients who survive the hyper-inflammatory forms of Covid-19 should not be underestimated. It is a condition whose duration will have to be verified over time, and which could also explain the cognitive problems that usually accompany long-COVID”
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Lancet Neurology. The neurological impact of COVID-19. Lancet Neurol. 2020, 19, 471. [Google Scholar] [CrossRef]
- Herman, C.; Mayer, K.; Sarwal, A. Scoping review of prevalence of neurologic comorbidities in patients hospitalized for COVID-19. Neurology 2020, 95, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020, 77, 683–690. [Google Scholar] [CrossRef] [Green Version]
- Pleasure, S.J.; Green, A.J.; Josephson, S.A. The spectrum of neurologic disease in the severe acute respiratory syndrome coronavirus 2 pandemic infection: Neurologists move to the frontlines. JAMA Neurol. 2020, 77, 679–680. [Google Scholar] [CrossRef]
- Beyrouti, R.; Adams, M.E.; Benjamin, L.; Cohen, H.; Farmer, S.F.; Goh, Y.Y.; Humphries, F.; Jäger, H.R.; Losseff, N.A.; Perry, R.J.; et al. Characteristics of ischaemic stroke associated with COVID-19. J. Neurol. Neurosurg. Psychiatry 2020, 91, 889–891. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Mu, J.; Guo, J.; Lu, L.; Liu, D.; Luo, J.; Li, N.; Liu, J.; Yang, D.; Gao, H.; et al. New onset neurologic events in people with COVID-19 in 3 regions in China. Neurology 2020, 95, e1479–e1487. [Google Scholar] [CrossRef]
- Zanin, L.; Saraceno, G.; Panciani, P.P.; Renisi, G.; Signorini, L.; Migliorati, K.; Fontanella, M.M. SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochir. 2020, 162, 1491–1494. [Google Scholar] [CrossRef]
- Zubair, A.S.; McAlpine, L.S.; Gardin, T.; Farhadian, S.; Kuruvilla, D.E.; Spudich, S. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: A review. JAMA Neurol. 2020, 77, 1018–1027. [Google Scholar] [CrossRef]
- Varatharaj, A.; Thomas, N.; Ellul, M.A.; Davies, N.W.S.; Pollak, T.A.; Tenorio, E.L.; Michael, B.D. CoroNerve Study Group. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: A UK-wide surveillance study. Lancet Psychiatry 2020, 7, 875–882. [Google Scholar] [CrossRef]
- Benussi, A.; Pilotto, A.; Premi, E.; Libri, I.; Giunta, M.; Agosti, C.; Alberici, A.; Baldelli, E.; Benini, M.; Bonacina, S.; et al. Clinical characteristics and outcomes of inpatients with neurologic disease and COVID-19 in Brescia, Lombardy, Italy. Neurology 2020, 95, e910–e920. [Google Scholar] [CrossRef] [PubMed]
- Alemanno, F.; Houdayer, E.; Parma, A.; Spina, A.; Del Forno, A.; Scatolini, A.; Angelone, S.; Brugliera, L.; Tettamanti, A.; Beretta, L.; et al. COVID-19 cognitive deficits after respiratory assistance in the subacute phase: A COVID-rehabilitation unit experience. PLoS ONE 2021, 16, e0246590. [Google Scholar] [CrossRef]
- Beghi, E.; Helbok, R.; Crean, M.; Chou, S.H.; McNett, M.; Moro, E.; Bassetti, C.; Jenkins, T.; Oertzen, T.; Bodini, B.; et al. EAN Neuro-COVID Task Force. The European Academy of Neurology COVID-19 registry (ENERGY): An international instrument for surveillance of neurological complications in patients with COVID-19. Eur. J. Neurol. 2020, 28, 3303–3323. [Google Scholar] [CrossRef]
- Helms, J.; Kremer, S.; Merdji, H.; Schenck, M.; Severac, F.; Clere-Jehl, R.; Meziani, F. Delirium and encephalopathy in severe COVID-19: A cohort analysis of ICU patients. Crit. Care 2020, 24, 491. [Google Scholar] [CrossRef] [PubMed]
- Zádori, N.; Váncsa, S.; Farkas, N.; Hegyi, P.; Erőss, B.; KETLAK Study Group. The negative impact of comorbidities on the disease course of COVID-19. Intensive Care Med. 2020, 46, 1784–1786. [Google Scholar] [CrossRef]
- Di Stadio, A.; Brenner, M.J.; De Luca, P.; Albanese, M.; D’Ascanio, L.; Ralli, M.; Roccamatisi, D.; Cingolani, C.; Vitelli, F.; Camaioni, A.; et al. Olfactory Dysfunction, Headache, and Mental Clouding in Adults with Long-COVID-19: What Is the Link between Cognition and Olfaction? A Cross-Sectional Study. Brain Sci. 2022, 12, 154. [Google Scholar] [CrossRef]
- Sathish, T.; Kapoor, N.; Cao, Y.; Tapp, R.J.; Zimmet, P. Proportion of newly diagnosed diabetes in COVID-19 patients: A systematic review and meta-analysis. Diabetes Obes. Metab. 2021, 23, 870–874. [Google Scholar] [CrossRef]
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M.; Siegelbaum, S.A.; Hudspeth, A.J.; Perri, V.; Spidalieri, G. Principi di Neuroscienze; Casa Editrice Ambrosiana: Milano, Italy, 2014. [Google Scholar]
- Song, I.U.; Choi, E.K.; Oh, J.K.; Chung, Y.A.; Chung, S.W. Alteration patterns of brain glucose metabolism: Comparisons of healthy controls, subjective memory impairment and mild cognitive impairment. Acta Radiol. 2016, 57, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S. Psychometric Evaluation of Horowitz’s Impact of Event Scale: A Review. J. Trauma Stress 2000, 13, 101–113. [Google Scholar] [CrossRef]
- Yong, S.J. Long COVID or post-COVID-19 syndrome: Putative pathophysiology, risk factors, and treatments. Infect. Dis. 2021, 53, 737–754. [Google Scholar] [CrossRef]
- Burgmer, M.; Rehbein, M.A.; Wrenger, M.; Kandil, J.; Heuft, G.; Steinberg, C.; Junghöfer, M. Early Affective Processing in Patients with Acute Posttraumatic Stress Disorder: Magnetoencephalographic Correlates. PLoS ONE 2013, 8, e71289. [Google Scholar] [CrossRef] [PubMed]
- Fine, J.S.; Ambrose, A.F.; Didehbani, N.; Fleming, T.K.; Glashan, L.; Longo, M.; Merlino, A.; Ng, R.; Nora, G.J.; Rolin, S.; et al. Multi-disciplinary collaborative consensus guidance statement on the assessment and treatment of cognitive symptoms in patients with post-acute sequelae of SARS-CoV-2 infection (PASC). PM&R 2022, 14, 96–111. [Google Scholar] [CrossRef]
- Solerte, S.B.; D’Addio, F.; Trevisan, R.; Lovati, E.; Rossi, A.; Pastore, I.; Dell’Acqua, M.; Ippolito, E.; Scaranna, C.; Bellante, R.; et al. Sitagliptin Treatment at the Time of Hospitalization Was Associated With Reduced Mortality in Patients with Type 2 Diabetes and COVID-19: A Multicenter, Case-Control, Retrospective, Observational Study. Diabetes Care 2020, 43, 2999–3006. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-T.; Lidsky, P.V.; Xiao, Y.; Lee, I.T.; Cheng, R.; Nakayama, T.; Jiang, S.; Demeter, J.; Bevacqua, R.J.; Chang, C.A.; et al. SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. Cell Metab. 2021, 33, 1565–1576.e5. [Google Scholar] [CrossRef] [PubMed]
- Denes, G. Manuale di Neuropsicologia. Normalità e Patologia dei Processi Cognitivi; Zanichelli: Bologna, Italy, 2019. [Google Scholar]
- Ceriello, A. Hyperglycemia and COVID-19: What was known and what is really new? Diabetes Res. Clin. Pract. 2020, 167, 108383. [Google Scholar] [CrossRef]
- Nassar, M.; Nso, N.; Gonzalez, C.; Lakhdar, S.; Alshamam, M.; Elshafey, M.; Rizzo, V. COVID-19 vaccine-induced myocarditis case report with literature review. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 102205. [Google Scholar] [CrossRef]
- Steenblock, C.; Schwarz, P.E.H.; Perakakis, N.; Brajshori, N.; Beqiri, P.; Bornstein, S.R. The interface of COVID-19, diabetes, and depression. Discov. Ment. Health 2022, 2, 5. [Google Scholar] [CrossRef]
- Chen, J.; Wu, C.; Wang, X.; Yu, J.; Sun, Z. The impact of COVID-19 on blood glucose: A systematic review and meta-analysis. Front. Endocrinol. 2020, 11, 574541. [Google Scholar] [CrossRef]
- Zhu, L.; She, Z.-G.; Cheng, X.; Qin, J.-J.; Zhang, X.-J.; Cai, J.; Lei, F.; Wang, H.; Xie, J.; Wang, W.; et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 2020, 31, 1068–1077.e3. [Google Scholar] [CrossRef]
- Kochhann, R.; Varela, J.S.; Lisboa, C.S.M.; Chaves, M.L.F. The Mini Mental State Examination: Review of cutoff points adjusted for schooling in a large Southern Brazilian sample. Dement. Neuropsychol. 2010, 4, 35–41. [Google Scholar] [CrossRef]
Depression Disorders | ||||||
---|---|---|---|---|---|---|
Mild | Moderate | Severe | ||||
N 17 | M | F | M | F | M | F |
20 | 5 | 28 | 25 | 4 | 2 | |
Anxiety Disorder | ||||||
Mild | Moderate | Severe | ||||
N 82 | M | F | M | F | M | F |
25 | 4 | 20 | 29 | 3 | 1 |
Diabetes Subjected | Mood Disorders | Executive Functions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mild | Moderate | Sever | Mild | Sever | ||||||
M | F | M | F | M | F | M | F | M | F | |
Base line 12 | 11% | 11% | 22% | 11% | 11% | 0% | 11% | 18% | 29% | 31% |
New onset diabetes N 6 | 0% | 0% | 0.11% | 0.06% | 0.11% | 0.06% | 0% | 0% | 60% | 40% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mezzatesta, C.; Bazzano, S.; Gesualdo, R.; Marchese, S.; Savona, M.L.; Reyes, M.T.; Provenzano, V. Neurocognitive Disorders in Post and Long Covid Patients: Preliminary Data, Gender Differences and New Diabetes Diagnosis. Diabetology 2022, 3, 514-523. https://doi.org/10.3390/diabetology3040039
Mezzatesta C, Bazzano S, Gesualdo R, Marchese S, Savona ML, Reyes MT, Provenzano V. Neurocognitive Disorders in Post and Long Covid Patients: Preliminary Data, Gender Differences and New Diabetes Diagnosis. Diabetology. 2022; 3(4):514-523. https://doi.org/10.3390/diabetology3040039
Chicago/Turabian StyleMezzatesta, Concetta, Sara Bazzano, Rosa Gesualdo, Simone Marchese, Maria Luisa Savona, Mario Tambone Reyes, and Vincenzo Provenzano. 2022. "Neurocognitive Disorders in Post and Long Covid Patients: Preliminary Data, Gender Differences and New Diabetes Diagnosis" Diabetology 3, no. 4: 514-523. https://doi.org/10.3390/diabetology3040039
APA StyleMezzatesta, C., Bazzano, S., Gesualdo, R., Marchese, S., Savona, M. L., Reyes, M. T., & Provenzano, V. (2022). Neurocognitive Disorders in Post and Long Covid Patients: Preliminary Data, Gender Differences and New Diabetes Diagnosis. Diabetology, 3(4), 514-523. https://doi.org/10.3390/diabetology3040039